
Summary

In collaboration with the tanker truck production company HMK Bilcon, we set out to continue
the work on the enhancement of the model-based development (MBD) pipeline for the SafeCon III
system with verification and automatic test generation initially proposed in [1, 2]. SafeCon III is a
safety-critical system that monitors and controls the pump system of tanker trucks, emphasizing the
need for the system to be free of serious defects. In production, the SafeCon III system is compiled
and executed in a runtime environment called HAWK (Hardware Abstraction With Knowledge)
developed by HMK Bilcon. Previously, to facilitate formal verification, the formalism of Tick Tock
Automata (TTA) was defined to formalize the runtime environment of HAWK [2], and a model
checker called AALTITOAD was created based on the described semantics [1]. Therefore, this paper
focuses on automatic test generation for the SafeCon III system based on the semantics of TTA.

TTAs differ from traditional Timed Automata, as variables are globally accessible, and there are
variables, called external variables, that are updated non-deterministically. In the semantics, the
external variables were modelled to update non-deterministically, since the values of external vari-
ables in the SafeCon III system are updated by reading input from sensors on the trucks. Because
of non-determinism, external variables greatly increase the state space, which makes the state space
of the entire SafeCon III system too large to be model checked by AALTITOAD at once. As such,
it is necessary to implement a way to test on a subset of the model. To this end, a formalism for
translating a set of model components to a Network of Tick Tock Automata is described.

For automatic testing, the program HAALT is implemented. HAALT is an automatic test gen-
erator, which verifies whether the industrial runtime environment of HAWK is trace equivalent with
the Tick Tock Automata verification engine AALTITOAD. AALTITOAD was chosen for the auto-
matic test generation, as it follows the semantics defined for TTAs. The alternative is to translate
the TTA to a common formalism such as Timed Automata and then use a different model checker.
This option seems more complex, as it would therefore require a way to correctly translate concepts
such as non-deterministic changes to variables and clocks in a TTA [1].

Overall, the process in HAALT is based on a method introduced in [3], which describes how to
automatically generate a test suite for some coverage criterion. In HAALT, based on some coverage
criterion, a TTA model is annotated, and a set of reachability queries are generated based on said
annotation. This annotated model is then given as input to AALTITOAD, which produces an ex-
ecution trace for each satisfiable query. Based on the trace, a set of TTA-transitions are generated
such that the trace can be simulated in HAWK, which produces its own trace. Finally, by simple
comparison, it is verified whether AALTITOAD and HAWK are trace equivalent for the given cov-
erage criterion. To formalize annotation of TTA models, we introduce a formalism for converting a
Tick Tock Automata (TTA) to an Annotatable Tick Tock Automata(ATTA). This conversion does
not alter the original execution semantics, as the ATTA can simulate the execution semantics of the
original TTA. The ATTA makes it possible to perform annotation based on logic coverage criteria,
and to this end, we define and implement semantics for annotating ATTAs based on location, edge,
and MC/DC coverage criteria.

To evaluate HAALT, testing was performed on a network of Fischer TTA models. It was found that
the annotation methods greatly expanded the state space, limiting the practical use of HAALT.
This was evident from testing on individual components of SafeCon III, as queries did not ter-
minate for MC/DC coverage. It was, however, possible to verify test equivalence between HAWK
and AALTITOAD based on location and edge coverage for simple components. When testing on



2

multiple components, it was immediately discovered that there are inherent differences in the way
AALTITOAD and HAWK handle the notion of Network of Tick Tock Automata.



HAALT - HAWK and AALTITOAD Automatic Likeness
Testing

Frederik M. W. Hyldgaard, Gustav S. Bruhns, Martin P. Hansen, and Rasmus Hebsgaard

Aalborg University, Institute of Computer Science

Abstract. In collaboration with the tanker truck production company HMK Bilcon, we set
out to continue the work on enhancing the model-based development (MBD) pipeline for the
SafeCon III system. As proposed by [1, 2], the pipeline can be extended to include automatic
test generation and verification. This paper specifically focuses on automatic test generation.
We introduce a formalism for converting a Tick Tock Automata (TTA) to an Annotatable
Tick Tock Automata (ATTA), which can simulate the execution semantics of the original
TTA. The ATTA makes it possible to perform annotation based on logic coverage criteria. We
define semantics for annotating ATTAs based on coverage criteria (location, edge, and MC/DC
coverage), which was implemented in a tool called HAALT. HAALT is an automatic test
generator, which verifies whether HMK Bilcon’s proprietary industrial runtime environment
HAWK is trace equivalent with the Tick Tock Automata verification engine AALTITOAD.
From testing, it is shown HAALT can perform verification on small components of SafeCon
III. However, it was also found that the annotation methods greatly expanded the state space,
limiting the practical use of HAALT.

Keywords: Automatic test generation · Tick Tock Automata · Annotatable Tick Tock Au-
tomata



4 F. Hyldgaard, G. Bruhns et al.



HAALT - HAWK and AALTITOAD Automatic Likeness Testing 1

1 Introduction

Model based development (MBD) is slowly gaining traction within the software industry. The de-
velopment cycle involves automatically generating code based on models, which are expressed in
more user-friendly formalisms than code. The simplicity of using MBD for development allows do-
main experts to be the ones developing the application. As described in [2], in industries with safety
critical systems, errors may have serious consequences, stressing the importance of testing. To this
end, model based development offers more fluid integration of software testing such as automatic
testing[1], since model checking performed on the model also applies to the generated code. This is,
of course, under the assumption that the code generator is semantically correct. In this paper, we
will work with the use case of HMK Bilcon.

2 HMK Bilcon

HMK Bilcon A/S is a Danish tanker truck production company manufacturing custom tanker trucks.
Each tank is produced as a custom order and most are equipped with the SafeCon line of systems.
The system controls the piping and pump system of the trucks including loading, unloading, and
transferring of liquids between tank compartments. This paper focuses on the latest version of the
SafeCon system, SafeCon III. As the trucks are designed to handle oil and petrol which are highly
flammable liquids, it is critical that the system always handles the liquids in a safe manner.

2.1 Current HMK Development Process

HMK Bilcon utilizes Model Based Development (MBD) to develop SafeCon III. The process begins
with a specification based on customer-requested features, after which domain experts create a
model in the modeling language of Tick Tock Automata (TTA). As shown on Figure 2, this model is
compiled down to an executable state machine, which is run in the proprietary runtime environment
HAWK (Hardware Abstraction With Knowledge) developed by HMK Bilcon. The new features are
then tested manually on the truck before they are marked ready for release.

2.2 Automatic Testing

SafeCon III is a safety-critical system, emphasizing the need for the system to be free of serious
defects. Because SafeCon III is developed using a MBD pipeline, it is fit to benefit from formal
verification, as analyzed in [1]. In the paper, it was proposed to expand the SafeCon III MBD
pipeline with formal model checking and automatic testing. For model checking, a verification engine
called AALTITOAD was created based on the semantics of Tick Tock Automata (TTA) [1]. In this
paper, we intend to define a method to incorporate automatic testing into the pipeline based on
AALTITOAD. The new proposed pipeline is shown in Figure 1, where our proposal of automatic
testing is marked in green.

Fig. 1. Incorporating automatic testing in a new proposed pipeline.

The purpose of automatic testing is to verify whether HAWK generates a correct state machine
based on the model. Therefore, if any error is found during automatic testing, it points to a fault in



2 F. Hyldgaard, G. Bruhns et al.

the runtime generation. Currently, developers from HMK Bilcon must manually test functionality
by going to the truck and checking whether the functionality works as desired. Automatic testing
allows for a more thorough evaluation of whether the generated state machine has similar behaviour
to the model, since it allows for testing of far more unique executions of the model than manual
testing.

Generate runtime

HAWK

Sensor reading

Control

TTA

TTA

TTA

Truck and
Pump System

HAWK

Java State
Machine

SafeCon III
Model

Fig. 2. Using the compiler in HAWK, a SafeCon III model composed of many TTAs is translated into a
java state machine. This state machine executes in the runtime environment of HAWK on the truck and
continuously interacts with the truck and pump system.

The rest of this paper is structured as follows: Existing tools for automatic testing are explored, and
a new tool capable of comparing HAWK to AALTITOAD is proposed. In sections 5 through 8, the
formalism of Tick Tock Automata is extended to allow for additional annotation of the models. In
sections 9 to 13, we discuss how the Annotatable Tick Tock Automata can be annotated to create a
set of queries, which when given as input to AALTITOAD, becomes a set of traces covering a given
coverage criteria. Lastly, the tool is evaluated and future work is discussed.

3 Related Work

The formalism of Tick Tock Automata, as defined in [2], is a relatively new research topic. In [1],
Gitz-Johansen introduces the verification engine AALTITOAD for TTAs and discusses the prob-
lems that occur due to TTAs being different from Timed Automata. Pedersen et al. [4] introduce a
random search model checking method for TTAs that allows for deeper searches in the state space,
but does not guarantee a full exploration of the state space. Lastly, HAWK has an integrated tool
which translates TTA models to NuSMV models [5] and utilizes a corresponding verification engine.
However, it is not guaranteed that the NuSMV model is trace equivalent with the HAWK runtime.



HAALT - HAWK and AALTITOAD Automatic Likeness Testing 3

Automatic and model based test generation has been explored for other formal languages. Enoiu
et al. [3] propose a method, where a test suite can be generated structurally using a model checker.
Function Block Diagram (FBD) programs are translated into UPPAAL[6] timed automata, and
reachability properties are generated such that they fulfill a set of logic coverage criteria. Similar
approaches using UPPAAL and reachability properties to generate traces that can be transformed
into test cases have been proposed in [7, 8, 9]. Furthermore, tools for automatic test generation
have been defined and implemented for various languages. In [10] Krenn et al. introduces a toolbox
for UML models and Timed Automata that uses mutation testing to generate a test suite capable
of catching specific errors. In [11] a toolbox for automatic test generation is defined for Stream X-
Machines (SXM), which is an extension of finite state machines. In [12] Angeletti et al. introduces
a tool, which automatically generates a test suite with full decision coverage for C programs.

In this paper, we introduce a tool, HAALT, which can verify whether a runtime can satisfy the
same reachability properties as a verification engine, using the traces generated by the verification
engine. To the extent of our knowledge this approach has not been used before, and certainly not for
TTAs. Other forms of runtime verification have, however, been proposed for other languages such
as Java [13, 14].

4 HAALT: HAWK AALTITOAD Automatic Likeness Testing

In [3], a method is outlined to automatically generate test suites for industrial systems. The
method begins with choosing a set of coverage criteria to base the testing on. Based on the
coverage criteria, Timed Automata models are annotated such that reachability queries can be
generated, which are given to a model checker. The model checker generates a set of test traces
that constitute the test suite (examples in [7, 8]). This method is highlighted, as it is relatable to
the setting of HMK Bilcon, where the models would be the SafeCon III TTA models, and the
model checker would be AALTITOAD. In terms of model checking, AALTITOAD can perform
reachability searches on TTAs with queries of the form ∃ ⋄ φ expressed as Computation Tree Logic
(CTL) [15]. This CTL formula is only satisfied given there exists a path in the computation tree
with a state on the path satisfying the predicate φ.

In order to apply the described method, the formalism for annotating Tick Tock Automata would
need to be defined for specific coverage criteria. The alternative would be to translate Tick Tock
Automata to a common formalism such as Timed Automata and use another model checker [6].
However, this option seems more complex, as it requires certainty that the translation preserves
the semantics of the TTA. This would require a way to correctly translate concepts such as
non-deterministic changes to variables and clocks [1].

Based on the described method, we propose a process called HAALT presented in Figure 3. In
HAALT, TTAs are annotated in order to generate a test suite that fulfills a given coverage
criterion. Through discussions with HMK Bilcon, we discovered that the most valuable coverage
criteria for HMK Bilcon would be logic-based coverage criteria, specifically modified
condition/decision coverage (MC/DC) [3]. They were, however, clear that they are indifferent to
whether their models conform to MC/DC, and therefore, it should only be used as a method to
annotate TTAs in a structured manner.

The test suite is generated by giving the annotated model and reachability queries as input to
AALTITOAD, which generates an execution trace for each satisfiable query. The test suite then
consists of the annotated TTA model and a test case for each trace; a trace represents the
expected behavior of the model. To test for equivalence between HAWK and AALTITOAD, each
AALTITOAD trace is parsed to generate a list of TTA-transitions, which can be simulated in



4 F. Hyldgaard, G. Bruhns et al.

HAWK. By simulating these transitions, a trace is generated from the HAWK runtime, which is
compared with the AALTITOAD trace. If the traces are equivalent, it is said that HAWK is
consistent with the semantics of TTAs. By consistent, we mean that if HAWK performs the same
transitions as AALTITOAD, it will reach the same states. If the traces deviate, it is assumed that
there is an error in the implementation of HAWK. Of course, this only holds under the assumption
that we have a working verification engine. As AALTITOAD may contain faults of its own, false
negatives may occur, and it is ultimately up to the software engineer to determine whether the
error stems from HAWK. HAALT is not able to find some errors, such as if HAWK generates
outgoing edges on locations that do not have outgoing edges in the TTA. The question which
HAALT answers is thus:

Can HAWK at least perform the same transitions as AALTITOAD with equivalent states between
HAWK and AALTITOAD before and after each transition?

DC, CC,
MC/DC

Coverage Criteria

Model

...

Reachability queries

...

AALTITOAD HAWKConverter

? 
=

Comparer
AALTITOAD trace HAWK trace

1
1 Annotate 

2

3 4

2
4

5 5

6

Traces Instructions

Results

TracesTraces

Run HAWK on model

Annotate

Unsugar
Unsugar

Fig. 3. Pipeline of HAALT.



HAALT - HAWK and AALTITOAD Automatic Likeness Testing 5

5 Tick Tock Automata

To facilitate automatic testing and model verification of SafeCon III models, semantics for a new
type of automata called Tick Tock Automata (TTA) were defined in [2], formalizing the state
machines generated by the compiler in HAWK. The semantics are based on Timed Automata, but
introduce several new notions such as tick-tock cycles and external variables. The relevant
semantics for this paper will be described in the following sections; for all details of the semantics,
see [1, 2].

Intuitively, the semantics describe the runtime environment of HAWK operating on a tanker truck.
As the truck is operating, the system is constantly performing internal computations and
regulating systems based on said computations. This is modelled as tick-transitions in TTA
semantics, where a tick represents a single computation, as illustrated in Figure 4. In addition to
performing computations, the truck also receives input data from sensors such as tank pressure,
speed, etc. In TTA semantics, each type of input is modelled as an external variable, where the
reading of input is modelled as a tock-transition. A formal tock-transition consists of
non-deterministically updating the value of each external variable based on the domain of the
variable and adding a random delay to all clocks, modelling the time it takes to read all sensors.

Fig. 4. Intuition behind tick-tock transitions. (Figure taken from [2])

For preliminaries, the following sets and functions are defined:

– B = {tt, ff}
– R = reals
– V = R ∪ B
– A clock valuation c : C → R0≤
– A variable valuation v : V ∪Ω → V

Then, Λ is defined as the set of variable valuations s.t. v ∈ Λ, and RC the set of clock valuations
s.t. c ∈ RC .
Formally, a TTA is defined as a 9− tuple (L,C, V,Ω,E, l0, v0, c0, τ) where:

– L is a set of locations
– C is a set of clocks
– V is a set of internal variables
– Ω is a set of external variables
– E is a set of edges of the form E = L×G× U × 2C × L
– l0 ∈ L is the initial location
– v0 ∈ Λ is the initial variable valuation
– c0 ∈ RC is the initial clock valuation



6 F. Hyldgaard, G. Bruhns et al.

– τ : V ∪Ω → 2V is a type function defining the domain of variables.

TTAs transition around the state space following a tick-tock cycle. During a tick transition, for
each outgoing edge e = ⟨l, g, u, r, l′⟩, the TTA non-deterministically performs a transition
(l, v, c) −→ (l′, v′, c′) for which the following holds:

l
g,u,r−−−→ l′ such that

g(v, c) = tt and
u(v) = v′ and
r(c) = c′

where g is the guard function of an edge, u the update function, and r the clock reset function. In
the case of a network of TTAs, the tick is considered to be global, and each TTA in the network
performs a single tick transition simultaneously.

During a tock, all values for external variables are updated non-deterministically and some real
valued time delay is added to all clocks in the system.

6 Translating from Components to TTAs

Model checking is often prone to state space explosion, and because TTAs have external variables
that are non-deterministic by design state space explosion happens very quickly. While
AALTITOAD applies some techniques to reduce the state space, it is still practically impossible to
verify queries for the entire SafeCon III model at once [1]. Therefore, it is necessary to find a way
by which smaller parts of the system can be verified. SafeCon III is based on a component
structure, wherein a model is composed of a set of components that themselves are similar to
TTAs. The components have some characteristics that differentiate them from TTAs. Most
importantly, they are able to refer to variables and clocks that are not defined in the component
itself. The variables and clocks may instead be defined in

– another component.
– specific files called .parts files.

.parts files are accessible from every component in the model and contain the definitions of all
clocks and external variables, as well as some internal variables. In order to translate from
components to testable TTAs, we define a formalism to describe the components of SafeCon III
based on their locations, edges, declarations of variables and clocks, and usage of variables and
clocks. There is a one-to-one correspondence between the locations, initial location, and edges of
the components and the resulting TTAs. Therefore, the main task lies in identifying how variables
from the components should be represented in the TTA.

Let a component be defined as COMP = (L,E,Dv, Dc, Uv, Uc, l0, v0, c0, τ)

– L is a set of locations.
– E is a set of edges of the form E = L×G× U × 2C × L
– Dv and Dc are the sets of variables and clocks declared in the component.
– Uv and Uc are the sets of variables and clocks that are referred to in the guards and updates of

the component.
– l0 ∈ L is the initial location.
– v0 ∈ Λ is the initial variable valuations of Dv.
– c0 ∈ RC is the initial clock valuations Dc.
– τ : Uv → 2V where V = R∪B, is a type function that defines the domain of the variables in Uv.



HAALT - HAWK and AALTITOAD Automatic Likeness Testing 7

The full model M can thus be seen as the set of all COMPs and a special

COMPparts = (∅, ∅, Dparts
v , Dparts

c , ∅, ∅, ϵ, vparts0 , cparts0 , τparts)

that contains all declarations of the .parts files.

A TTA has two sets of variables, internal and external, which must be differentiated between
during the translation. Assume that we have a set T ⊆ M such that T is the set of components
that should be tested. The usages of variables in a component can then be categorised into four
categories as shown in Figure 5. A component can

1. read from variables declared in T
2. write to variables declared in T
3. read from variables not declared in T
4. write to variables not declared in T

Comp1

Comp2

M
T

 

  

 

Fig. 5. An illustration of the four categories of variables. Arrows point from the usage of a variable to where
it is declared.

To argue about which categories a variable lies within, Uv is decomposed into two sets such that
Uv = Wv ∪Rv, where Wv and Rv contain all variables that are respectively written to and read
from inside a given component. The categories are formally defined by

1. RT = {v ∈ Rv | ∃c ∈ T s.t. v ∈ Dc
v} and WT = {v ∈ Wv | ∃c ∈ T s.t. v ∈ Dc

v}
2. RT̂ = {v ∈ Rv | ∃c ∈ M \ T s.t. v ∈ Dc

v} and WT̂ = {v ∈ Wv | ∃c ∈ M \ T s.t. v ∈ Dc
v}

where v ∈ Dc
v indicates that v lies in the declaration set Dv of component c.

A variable should be external in the TTA when a COMP /∈ T writes to a variable defined in T , or
when a COMP ∈ T reads from or writes to a variable not defined in T .

ΩT =

( ⋃
c∈M\T

W c
T

)
∪

( ⋃
c∈T

Rc
T̂
∪W c

T̂

)
(1)



8 F. Hyldgaard, G. Bruhns et al.

where W c
T , R

c
T̂
and W c

T̂
are the read and write sets of component c. All other variables only used in

T can be internal, since it is only components in T that affect these.

VT =

( ⋃
c∈T

U c
v

)
\ΩT (2)

A network of TTAs {A1, ..., A|T |} can then be defined by defining the TTA Ai for all components
COMPi = (Li, l

i
0, Ei, D

i
v, D

i
c, v

i
0, c

i
0, U

i
v, U

i
c , τ) in T such that

Ai = (Li, l
i
0, C, VT , ΩT , E, v0, c0, τ) (3)

Clocks and variables are shared across the network and are not dependent on i. Therefore, v0 is the
union of all vi0 of components in M and c0 is the union of all ci0 of components in M . Furthermore
C is the union of all Uc of components in T . Hence, it is shown that it is possible to translate a set
of components from SafeCon III into a network of TTAs, where the internal and external variables
in the network encode how the variables are used in relation to the entire model of SafeCon III.

7 Annotatable Tick Tock Automata

In HAALT, models are annotated as part of the process to specify reachability queries based on a
set of coverage criteria. To describe annotation in the context of TTAs, we introduce the notion of
Annotatable Tick Tock Automata (ATTA).

For ATTAs, a new set of auxiliary variables A is introduced such that the set of all variables
becomes Z = Ω ∪ V ∪A. Then, to create a test suite for some coverage criterion, it must be
possible to evaluate guards of edges and make updates to auxiliary variables based on said
evaluations. However, since an update only occurs when the guard of the same edge evaluates to
true, the updates to the auxiliary variables will not be performed when the guard evaluates to
false. As such, updates to auxiliary variables cannot be placed on the same edge as the guard itself.
Our solution is to create an ATTA, which is a copy of the original TTA, but with additional edges
on which the guards of the following edges can be evaluated. The solution is illustrated in Figure 6.
Each location is split into two parts; a left and right part. By splitting a location into two parts, it
is now possible to place the updates to auxiliary variables before the original edges by adding new
edges.

7.1 Transformation to ATTA

A TTA can be transformed into an ATTA in three steps.

1. For all locations l split it into two locations, ll and lr, corresponding to a left and right part.

2. Map all edges e that previously went from li to lk such that they now go from lri to llk
3. Create a new edge e from ll to lr



HAALT - HAWK and AALTITOAD Automatic Likeness Testing 9

Fig. 6. A TTA and its corresponding ATTA. The TTA consists of two locations with a single edge. In the
ATTA, the locations are split into two new locations, denoted ll and lr. The two parts of the location is then
connected by an edge. The original edge going from l1 to l2 in the TTA, goes from lr1 to ll2 in the ATTA
and is denoted eo. (The locations in the ATTA have been drawn as half circles for illustration, but they act
exactly as a normal location.)

Given a TTA = (L,C, V,Ω,E, l0, v0, c0, τ) define a new ATTA = (L′, C, Z,E′, l′0, v
′
0, c0, τ). All

auxiliary variables have an initial valuation of ff .

v′0(x) =

{
v0(x) if x ∈ V ∪Ω

ff if x ∈ A
(4)

In Equation 5, the left and right locations are created and combined into L′.

Ll =

|L|⋃
i=1

{lli} Lr =

|L|⋃
i=1

{lri } L′ = Ll ∪ Lr (5)

The definition of E′ is split into three subsets Eo, Econ, and Eaux such that their union forms the
set E′. The set Eo represents the original edges going between locations, which in the ATTA is
between lri and llk. The set Econ represents the edges connecting a location lli to the corresponding
location lri . These edges contain neither guards nor clock resets as they are included to ensure that
a tick transition is always possible when in a given location ll. This is further elaborated in section
8. Eaux is the only set of edges where we allow updates to auxiliary variables. Therefore, the set
will be used during annotation to make updates to auxiliary variables.

E′ = Eo ∪ Econ ∪ Eaux (6)

To create Eo we redefine the original edges by moving the start and end destination of the edge to
the corresponding locations after the split. This means that if an edge previously went from l4 to
l5, it will now go from lr4 to ll5.

Eo = {eo| if e = ⟨li, g, u, r, lk⟩ ∈ E then eo = ⟨lri , g, u, r, llk⟩} (7)

To create Econ, we add an edge from the left part of a location to the right part of a location. As
mentioned, this edge contains neither a guard nor clock updates.



10 F. Hyldgaard, G. Bruhns et al.

Econ =

|L|⋃
i=1

{ei} where ei = ⟨lli, ϵ, ϵ, ∅, lri ⟩ (8)

The set Eaux depends on the coverage criterion that is being annotated for and is therefore empty
until annotation has happened.

Eaux = ∅ (9)

As mentioned, auxiliary variables are created as part of the annotation process. Specifically,
auxiliary variables are used to track whether certain configurations of internal and external
variables are possible. Due to how AALTITOAD explores the state space, external variables can
only change when evaluating a guard of an edge. Therefore, to be able to evaluate whether a
specific variable configuration is possible, a new auxiliary edge must be created with a guard
containing the specific variable configuration as seen in Figure 9. Then, if it is possible to take the
edge, it can be concluded that the specific variable configuration is possible, and the corresponding
auxiliary variable can be updated.

Fig. 7. An example of how MC/DC annotation would be performed by adding edges to Eaux based on the
guard of the original edge eo. See Section 9.1 for details of how the guards of the auxiliary edges are formed.

Having added these locations and edges, we have created an ATTA. It can then be argued that the
ATTA can simulate its corresponding TTA under a set of constraints.

7.2 Constraints for a valid ATTA

To ensure that the transformation of a TTA to an ATTA does not alter the original execution
semantics, the following constraints must hold for any ATTA to be valid.
Edges in Eaux must only contain updates to auxiliary variables.

∀e = ⟨l, g, u, r, l′⟩ ∈ Eaux : ∀z ∈ Z : v(z) ̸= v′(z) =⇒ z ∈ A (10)

Edges in Eo must not contain updates to auxiliary variables

∀e = ⟨l, g, u, r, l′⟩ ∈ Eo : ∀z ∈ Z : v(z) ̸= v′(z) =⇒ z ∈ Z \A (11)



HAALT - HAWK and AALTITOAD Automatic Likeness Testing 11

where u(v) = v′

Connection edges may not have have guards nor updates.

∀e = ⟨l, g, u, r, l′⟩ ∈ E′ : e ∈ Econ =⇒ g = ϵ ∧ u = ϵ (12)

Auxiliary edges must only go between ll and lr of the same original location.

∀e = ⟨li, g, u, r, l′j⟩ ∈ E′ : e ∈ Eaux ∪ Econ =⇒ li ∈ Ll ∧ l′j ∈ Lr ∧ i = j (13)

Auxiliary and connecting edges must not contain any clock resets.

∀e = ⟨l, g, u, r, l′⟩ ∈ E′ : e ∈ Eaux ∪ Econ =⇒ r = ∅ (14)

Given an ATTA follows these constraints, it can be argued that it can simulate a corresponding
TTA, as seen in Section 8.

8 Simulation of TTAs

In this section we argue that a given ATTA can simulate its corresponding TTA maintaining the
execution semantics of the original TTA. Based on the constraints put forth in Section 7.2, it
follows that each tick transition in a given TTA can be simulated in the corresponding ATTA by
performing two tick transitions. Intuitively, the first tick in the ATTA is necessary to take either
an edge ea or an edge ec in the ATTA, as these edges do not appear in the original TTA. The next
tick is needed to match the tick in the original TTA. This is formally defined in equation 15 for a
TTA and its corresponding ATTA.

TTA : (li, vt, c) −→tick (lj , v
′
t, c

′) ⇐⇒ ATTA : (lli, va, c) −→tick (lri , v
′
a, c) −→tick (llj , v

′′
a , c

′) (15)

where ∀x ∈ Ω ∪ V : vt(x) = va(x) ∧ vt(x) = v′a(x) ∧ v′t(x) = v′′a(x)

By construction, the first tick in the ATTA is always possible, as at least one of the edges between
locations lli and lri can be taken, and the constraint presented in Equation 10 will always hold.
Hence, ∀x ∈ Ω ∪ V : vt(x) = v′a(x). Without loss of generality, it is assumed the first tick of the
ATTA is performed immediately, adding no time to the clocks. Furthermore, due to the constraint
in Equation 13 the edge taken during the tick has no associated clock reset. The clock valuation is
therefore constant before and after the tick.

As for the second tick, note that the ATTA is constructed such that for all li ∈ L there is a
corresponding pair lli and lri . By construction, the outgoing edges from lri are the same as those
going out from li in the original TTA. Since no variables or clocks are changed from the original
TTA after the first tick in the ATTA, the set of possible edges to take are the same as those before
the tick in the original TTA. Hence, after the second tick, ∀x ∈ Ω ∪ V : v′t(x) = v′′a(x) and the clock
valuation becomes c′. Thereby, an ATTA can simulate a tick in a corresponding TTA by
performing two ticks.

Due to the introduction of auxiliary variables that depend on external variables, we have
introduced a need for tocks to occur during the double tick of the ATTA, if we want to take any
auxiliary edge. An ATTA may therefore perform the actions tick → tock → tick → tock. The
ATTA is, however, still able to simulate any TTA with any Tick-Tock cycle, since all left and right
parts of locations are connected by the empty edges in Econ. Hence, it is always possible to



12 F. Hyldgaard, G. Bruhns et al.

perform the same amount of double ticks in the ATTA, as the amount of ticks in the Tick-Tock
cycle of the original TTA. If the original TTA has a Tick-Tock cycle with multiple ticks for every
tock, the addition of additional tocks is still not a problem. This is due to the fact that there will
always be a possible branch that allows for the same execution as the original TTA, since the
external variables are chosen without constraints.

9 Test coverage criteria

In the software industry, coverage criteria are used to assess the thoroughness of test cases used in
any testing of code. Coverage criteria are also used in the setting of automatic unit testing of
models. Various types of test coverage exist, such as model-based coverage criteria [16] and
logic-based coverage criteria. As mentioned in Section 4, the logic based criteria MC/DC coverage
is the most valuable coverage criteria for HMK Bilcon.

9.1 MC/DC for TTAs

To understand Modified condition/decision coverage in the context of a TTA, we must first define
what is meant by decision and condition. Decisions in TTAs are the points, where it is determined
whether an edge is taken or not. Thus, if there are multiple possible edges to take from a location
in a given TTA, then there are multiple decisions. Whether it is possible to take an edge depends
on the guard of the edge. Each guard consists of one or more conditions combined through boolean
operators (and, or). Therefore, a single decision is covered if it is possible to have the guard of the
given edge evaluated to true in one trace and false in another. Let {di} be the set of decisions and
{cij} be the set of conditions in decision di.

To fulfill decision coverage, each decision must be able to evaluate to both true and false.

φ1 : ∃ ⋄ di and φ2 : ∃ ⋄ ¬di (16)

To fulfill condition coverage, each condition cij in decision di must be able to evaluate to both true
and false

φ1 : ∃ ⋄ cij and φ2 : ∃ ⋄ ¬cij (17)

For a test suite to fulfill MC/DC, it must be checked that all conditions cij in di determine the
evaluation of di. cij determines di if there exists a configuration of values of the variables in the
conditions of di except cij such that the evaluation of di is different for the two different
evaluations of cij . Furthermore, it must be verified that it is possible for cij to evaluate to both
true and false. Whether cij determines di can be checked using the following expression, where ⊕ is
the binary operation XOR.

di[cij 7→ tt]⊕ di[cij 7→ ff ] (18)

Thus the check of MC/DC requires two tests for every condition. These two queries together
constitute an MC/DC pair.

φ1 : ∃ ⋄ cij ∧ (di[cij 7→ tt]⊕ di[cij 7→ ff ]) (19)

φ2 : ∃ ⋄ ¬cij ∧ (di[cij 7→ tt]⊕ di[cij 7→ ff ]) (20)



HAALT - HAWK and AALTITOAD Automatic Likeness Testing 13

9.2 Model-based coverage criteria

Other than logic-based coverage criteria, annotation for the model-based coverage criteria location
coverage and edge coverage are implemented as well.
As defined in [8], a test suite satisfies the edge coverage criterion, when it is possible to take each
edge in the model. The location coverage criterion is satisfied by a test suite when each location in
a model is reached during execution of the tests [8]. Including these criteria allows us to compare
the runtime and test suite size between the different criteria.

9.3 Test suite size

Since a test suite consists of a set of query traces, the size of the test suite is at most the number of
queries generated for the model being tested. In many instances, however, the actual size will be
smaller, since AALTITOAD only generates traces for satisfiable queries.

For location coverage, one query is generated for each location in the model, and for edge coverage,
one query for each edge. Lastly, the amount of queries for MC/DC coverage depends on the
number of MC/DC pairs in the model and, thereby, the number of edges with guards, the size of
the guards, and how the guards are constructed. For example, for each variable in the guard of the
form a ∨ b ∨ c ∨ d, there is an MC/DC pair, so it is linear in the number of queries it generates.
Considering a guard of the form (a∧ b)∨ (c∧ d), the number of MC/DC pairs more than triples for
every two variables added. As a result, the test suite for MC/DC is often bigger than both location
and edge coverage with the potential of having exponentially many queries based on the number of
conditions in the guard.

10 Location Annotation

To generate queries for the location coverage criterion, it is necessary to create a set of auxiliary
variables that keep track of whether a location has been visited. In an ATTA, this can be done by
annotating the auxiliary edges.

A =

|Econ|⋃
i=1

{ai} (21)

Each auxiliary edge is then responsible for updating its own auxiliary variable such that

Eaux =
{
eai = ⟨ll, ϵ, u, ∅, lr⟩ | eci = ⟨ll, ϵ, ϵ, ∅, lr⟩ ∈ Econ

}
(22)

where u(v) = v
[
ai 7→ tt

]
It is then possible to verify whether a location li is reachable by checking if the auxiliary variable
ai is eventually true:

∃ ⋄ ai == True

11 Edge Annotation

Given an ATTA, an auxiliary variable must be created and maintained for each edge in the
original TTA. Let λ(e) be a function λ : E → 2E , such that

λ(eλ = ⟨lλ, gλ, uλ, rλ, l
′
λ⟩) = {e = ⟨l, g, u, r, l′⟩ ∈ E | l′λ = l} (23)



14 F. Hyldgaard, G. Bruhns et al.

The set given by λ(eλ) is thus the set of all edges that start in the location where edge eλ ends.
For each edge in the original set of edges, add one auxiliary variable to the set A.

A =

|eci∈Econ|⋃
i=1

|λ(eci )|⋃
j=1

{aij} (24)

Then, the auxiliary variables are updated on the newly created edges.

Eaux =

|eci∈Econ|⋃
i=1

|eoj∈λ(eci )|⋃
j=1

{ea = ⟨lli, g, u, ∅, lri ⟩|g = goj and u(v) = v[aij = tt]} (25)

Thus, a set of tests that cover all edges is a set of queries verifying whether for all edges in the
original TTA, the annotation variable aij is eventually true:

∃ ⋄ aij == True

12 MC/DC Annotation

Given an ATTA, two auxiliary variables must be created and maintained for every MC/DC pair on
every edge in the original TTA.
Let σ be a function such that σ(e ∈ E′) maps to the n-tuple K of conditions that constitute the
guard of edge e. Each condition k ∈ K is then a mapping k : Λ× RC → B.
Let α(g, k) be a function that for a given guard g and condition k in σ(e) returns the set of
MC/DC pairs of k, where an MC/DC pair is a configuration of conditions in the set σ(e) \ k such
that k exclusively determines the value of g. For example, given g = ((a ∧ b) ∨ c) then
α(g, c) = {(tt, ff), (ff, tt), (ff, ff)}. Intuitively, each q ∈ α(g, c) represents an MC/DC pair for
condition c, where the configuration for a and b is given by q and the value of c is respectively tt
and ff , forming a pair. This is shown in Table 1.

a b c (a ∧ b) ∨ c

tt ff tt tt
tt ff ff ff

ff tt tt tt
ff tt ff ff

ff ff tt tt
ff ff ff ff

Table 1. The three MC/DC pairs for condition c.

For each edge in the original set of edges, iterate through all of the conditions k and add two
auxiliary variables to A for each MC/DC pair.

A =

|eci∈Econ|⋃
i=1

|eoj∈λ(eci )|⋃
j=1

|k∈σ(eoj )|⋃
m=1

|α(go
j ,k)|⋃

n=1

{aijmn, a
′
ijmn} (26)

For all MC/DC pairs add two auxiliary edges, one for each auxiliary variable of the pair. The first
edge represents the condition k, and the second represents the negation of k.



HAALT - HAWK and AALTITOAD Automatic Likeness Testing 15

Eaux =

|eci∈Econ|⋃
i=1

|eoj∈λ(eci )|⋃
j=1

|k∈σ(eoj )|⋃
m=1

|q∈α(go
j ,k)|⋃

n=1

{eijmn = ⟨lli, g, u, ∅, lri ⟩|g = k ∧
((|Σ=(σ(eoj )\k)|)∧

w=1

Σw = qw

)
and u(v) = v[aijmn 7→ tt]} ∪

{eijmn = ⟨lli, g, u, ∅, lri ⟩|g = ¬k ∧
((|Σ=(σ(eoj )\k)|)∧

w=1

Σw = qw

)
and u(v) = v[a′ijmn 7→ tt]}

(27)

For each condition in a given guard, MC/DC is achieved if for each condition k, it holds that the
queries for at least one pair are satisfied.

∃ ⋄ aijmn == True

∃ ⋄ a′ijmn == True

13 Non-determinism

One of the key requirements of HAALT is that it is possible to recreate an exact trace found in
AALTITOAD in HAWK. It is therefore a problem when a non-deterministic choice happens in
AALTITOAD, since HAWK might not make the same decision. HAWK handles non-deterministic
decisions naively by always choosing the first edge. First is defined by the order in which the edges
appear in the .json files that constitute a model. In contrast, AALTITOAD handles
non-determinism by choosing a random valid edge. This discrepancy between strategies is an
obvious error in either the implementation of HAWK or AALTITOAD that would be caught by
HAALT. However, since it is a known error, it is not useful to generate a test suite to show that
HAWK cannot not do the same as AALTITOAD in case of non-determinism. Therefore, the
functionality to remove non-determinism from models has been implemented.

Removing non-determinism is achieved by numbering every edge in the annotated ATTA using an
external variable p before it is given to AALTITOAD. Since each value of p directly corresponds to
an edge taken by AALTITOAD, it is possible to tell HAWK exactly which edge it should take,
depending on the assigned value of p. The set of edges in the ATTA = (L, l0, C, Z,E, v0, c0, τ) is
thus

E = {e′i = ⟨l, g′, u, r, l′⟩ | ei = ⟨l, g, u, r, l′⟩ ∈ E and g′ : ((g) ∧ p = i)} (28)

and Ω = Ω ∪ {p}.

It must be noted that this solution of adding the p-value to the original edges directly changes the
model and allows for more possible states to be explored. The advantage is that it makes it possible
to ignore errors caused by non-determinism, and instead, find other types of errors. A disadvantage
is that the TTA no longer has multiple legal edges to take in a single state, which parts of the
SafeCon III system are modelled after. This entails that AALTITOAD may find a trace that is not
possible if HAWK is run independently of the trace from AALTITOAD. However, the main goal of
HAALT is to test whether HAWK can follow the same trace as AALTITOAD. Thus, whether it is
actually possible in the production environment on the trucks is not the purpose of the tests.



16 F. Hyldgaard, G. Bruhns et al.

14 Determining trace similarity

Based on a set of reachability queries, the goal of HAALT is to run AALTITOAD on a network of
ATTAs (NATTA) to determine a set of instructions to give HAWK. Both of these processes
generate traces in the form

s1, s2, ..., sn

si = (l̄i, vi, ci) ∈ S = 2L × Λ× RC

The states can then be compared one by one, and if any of the states do not match in the two
traces, an error is found. The algorithm is shown in 1, where a single query is given. It is, however,
trivial to extend the algorithm to allow for a set of queries.

Algorithm 1 Pseudo code for testing trace similarity.

1: procedure TestSimilarity(NATTA, φ)
2: TA = AALTITOAD(NATTA,φ)
3: I = GenerateInstructions(TA)
4: TH = SimulateHAWK(NATTA, I)
5: for each si = (l̄i, vi, ci) ∈ TA do
6: if si ̸= TH,i then
7: Error(si)
8: end if
9: end for
10: end procedure

Determining the set of instructions to give HAWK is trivial assuming the usage of ATTAs, since it
is impossible in ATTAs to have an edge going to and from the same location. This is because any
loops on location l in the original TTA will go from lr to ll in the corresponding ATTA. Therefore,
if the location changes, a tick has occurred, otherwise it was a tock.

Algorithm 2 Pseudo code for generating instructions

1: function GenerateInstructions(T = s1, s2, .., sn)
2: Let I be a new list
3: for each si, si+1 = (l̄i, vi, ci), ( ¯li+1, vi+1, ci+1) ∈ T do
4: if l̄i ̸= ¯li+1 then
5: Append tick to I
6: else
7: Append tock(si, si+1) to I
8: end if
9: end for
10: return I
11: end function

A tock(si, si+1) contains the set of external variables that have been changed between si and si+1.

15 Results and Discussion

To gauge the practical use of HAALT, it was tested on SafeCon III components. Additionally, due
to state space explosion, the ability of AALTITOAD to solve the generated queries is the main



HAALT - HAWK and AALTITOAD Automatic Likeness Testing 17

computational bottleneck of HAALT, so it is important that the annotation process does not
increase the state space more than necessary. Therefore, we verify how many additional states we
introduce for each annotation method to further reason about the practical use of HAALT.

15.1 Testing on SafeCon III

Throughout the development process of HAALT, SafeCon III has been the target model for
testing. Individual parts of the model have been tested based on the formalism in Section 6. From
testing single components at a time, HAALT has verified trace equivalence between HAWK and
AALTITOAD based on location and edge coverage criteria. However, it is evident that when
testing for the MC/DC coverage criterion, most components are simply too large, as AALTITOAD
does not terminate for some queries. Additionally, when testing multiple components at a time, it
is evident that there are inherent differences between AALTITOAD and HAWK, as HAALT
immediately finds differences in the traces. This will be further elaborated in Section 16.2.

15.2 Experimental Setup

To evaluate the efficiency of queries running on ATTA models in comparison to TTA models, we
utilize the setup used in [1]. The setup consists of a network of TTAs that are based on the
Fischer’s mutual exclusion algorithm shown in Figure 8. Two experiments are trialled: in
experiment 1, the query φ1 : ∃ ⋄ ctr > 1 is tested and for experiment 2, φ2 : ∃ ⋄ ctr = n, where n is
the number of Fischer components being tested. The queries were originally designed as safety
queries, but suffice as an indicator of the size of the state space. For φ2, the ∧ ctr = 0 part is
omitted from the guard between l3 and l4, as the purpose is to see if every model can reach l4. For
each experiment, AALTITOAD is run on the Fischer TTA model as well as the corresponding
ATTA model for location, edge, and MC/DC coverage. Additionally, the pick-first state-picking
strategy is used for consistency. The experiments are run on a PC with 8-core Intel i7-4770 3.40
GHZ CPU and 16GB of RAM on a Ubuntu 21.10 operating system.

Fig. 8. Fischer model as a TTA. x is a timer, pid is the process identifier, id is a control variable, ctr is a
counter for the number of parallel TTAs positioned in l4, and k is a constant k = 2. Taken from [1].

15.3 Data

The data is illustrated in Table 2 and Table 3 respectively, where data is collected for 1 to 5
parallel Fischer TTA models. Fi* denotes that each Fischer model is modified so that the guard on



18 F. Hyldgaard, G. Bruhns et al.

the edge between l3 and l4 now is only id = pid. In this context, N/A denotes that AALTITOAD
terminated without results due to running out of memory. It is evident that the annotated models
introduce a non-linear amount of states to the explored state space. Furthermore, the queries do
not terminate for Fischer-4 in experiment 1 nor Fischer-5 for experiment 2. Annotation for
MC/DC coverage is especially limited, as φ1 only terminates for Fisher-1 and Fischer-3 for φ2.

Not annotated Location Edge MC/DC

F1 9 21 34 173
F2 99 1367 4234 N/A
F3 739 44952 259043 N/A
F4 4421 N/A N/A N/A

Table 2. Number of unique explored states for φ1.

Not annotated Location Edge MC/DC

F1* 6 22 18 48
F2* 52 144 500 587
F3* 379 9938 6110 11111
F4* 1421 17362 70753 N/A
F5* 19061 N/A N/A N/A

Table 3. Number of unique explored states for φ2.

15.4 Evaluation of Results

Based on the results, it is clear that performing annotation greatly increases the amount of states
to be explored. As seen in Table 2, when running AALTITOAD on an annotated model consisting
of four Fischer components, it runs out of memory as a result of the increased state space for all
annotation methods. For MC/DC, AALTITOAD could only handle one Fischer component.
Considering the small size of a Fischer component, this means that queries for annotated models
with even a few small components can be practically impossible for AALTITOAD to satisfy. In
addition, unlike in SafeCon III, no external variables are used in the Fischer models, which would
increase the set of possible values for variables and states. This is worsened when testing on a
subset of the SafeCon III model, as some internal variables are made external. Hence,
AALTITOAD has similar problems running reachability searches on SafeCon III models with few
annotated components.

Since the test suite for MC/DC coverage is the most thorough, it is expected that it generates the
most states to explore. While this requires more memory, it is not inherently bad, since the goal of
performing MC/DC is to test a wide range of possible program executions. Similarly, edge coverage
will generally generate more states to explore than location coverage.

While the verification of the queries for MC/DC coverage requires many states to be explored, our
annotation method introduces many new states that are only considered new by AALTITOAD due
to the auxiliary variables. Specifically, when auxiliary variables are updated as a result of taking an
auxiliary edge, AALTITOAD will regard it as a new state. Considering that there can be multiple
auxiliary edges between two locations, many states can be added because of this. An example of
this is illustrated in Figure 9. For the given example, the amount of new states for AALTITOAD



HAALT - HAWK and AALTITOAD Automatic Likeness Testing 19

to search grows exponentially. Additionally, to take an auxiliary edge, external variables may have
to be changed to satisfy the guard of the auxiliary edge, expanding the state space further.

However, these changes to auxiliary variables and external variables have no impact on possible
future states, as auxiliary variables never appear in guards, and external variables can at all times
be given new values non-deterministically. As such, to make it feasible for AALTITOAD to solve
more queries, states added due to the annotation of the model could be ignored. Specifically, if a
tick is performed, and the new state is only different from a previously explored state due to
external or auxiliary variables, the state should not be considered unique nor be further explored.

Fig. 9. If the annotation method adds two additional edges for each location, the amount of additional states
for AALTITOAD to search is equal to 3n, where n is the number of locations in the original TTA.

16 State of Aaltitoad

An underlying assumption of HAALT is that AALTITOAD is a working verification engine for
Tick Tock Automata. To ensure that this is a reasonable assumption, the state of AALTITOAD
has continuously been surveyed for bugs, and improvements have been made throughout the
process of developing HAALT in collaboration with HMK Bilcon. Many errors have been found in
AALTITOAD and almost as many have been fixed. In the following sections, the current state of
AALTITOAD will be accounted for including its current limitations.

16.1 State space explosion

As discussed in [1], AALTITOAD is limited in the size of TTAs it can model check, due to state
space explosion. HAALT depends on AALTITOAD to generate traces, so these limitations also
apply to HAALT, which makes it practically impossible to use HAALT on non-trivial components
of SafeCon III. In [1], Gitz-Johansen discusses some method to improve the state space exploration
algorithm in AALTITOAD, which may allow for query verification on larger TTAs.

16.2 Network of tick tock automata

In its current state, AALTITOAD does not adhere to the semantics described in [2] concerning the
behavior of a network of Tick Tock Automata (NTTA). The intended behavior is that a
tick-transition is global, where all TTAs in the NTTA must change location if a tick-transition is
valid. This is not the case in AALTITOAD, where it is possible for TTAs to change states one at a
time despite other TTAs having valid tick-transitions. Consequently, the only result you get when
testing multiple components is that HAWK and AALTITOAD generate different traces.



20 F. Hyldgaard, G. Bruhns et al.

16.3 Parsing guards

AALTITOAD incorrectly parses guards containing external variables and parentheses. The extend
of this error is not completely understood, but if a guard contains an external variable and
parentheses, AALTITOAD may evaluate the entire guard to false. Since the translation from a set
of components to a network of TTAs often changes variables to external, this error limits the
amount of queries that can be satisfied by AALTITOAD.

17 Conclusion

In this paper, we introduced and formalized the notion of Annotatable Tick Tock Automata
models based on different test coverage criteria. This includes semantics for annotation methods
based on location coverage, edge coverage, and MC/DC coverage. Following the semantics, the
different annotation methods were implemented in a program called HAALT, which is used for
automatic test generation. Using the verification engine, AALTITOAD, HAALT is able to verify
whether the industrial runtime environment HAWK is trace equivalent with the semantics of Tick
Tock Automata for some coverage criterion. However, it was found that HAALT currently has
limited practical use, as the annotation methods introduce too many new states for AALTITOAD
to handle with the current state of AALTITOAD. Testing on the industrial system SafeCon III
revealed that HAALT is able to perform automatic verification on small components. When testing
multiple components at a time, an error is immediately found, indicating an inherent difference in
the handling of Network of Tick Tock Automata between HAWK and AALTITOAD.

HAALT is currently available for HMK Bilcon to use and further develop.

18 Future work

As HAALT is dependent on AALTITOAD for verification, resolving the limitations outlined in
Section 16 would also benefit HAALT. This is a plausible solution, as AALTITOAD is open source.
Improvements can also be made to the annotation process in HAALT, especially for MC/DC. The
main improvement would be to reduce the number of duplicate states, which are caused by
auxiliary edges and auxiliary variables. For a tick transition, the resulting state should only be
considered a unique state, if there is a difference in internal variables, and not auxiliary or external
variables.

References

[1] Asger Gitz-Johansen. AALTITOAD: A Tick Tock Automata Verification Engine. visited on
05-05-2022. 2020. url: http://ulrik.blog.aau.dk/hmk/.

[2] Asger Gitz-Johansen. Tick Tock Automata: A Modelling Formalism for Real World
Industrial Systems. visited on 05-05-2022. 2020. url: http://ulrik.blog.aau.dk/hmk/.

[3] Eduard P Enoiu et al. “Automated test generation using model checking: an industrial
evaluation”. In: International Journal on Software Tools for Technology Transfer 18.3 (2016),
pp. 335–353.

[4] Thomas Pedersen et al. HMKAAL: Formal Verification and Detection of Non-determinism
and Data Races in Industrial Systems. visited on 05-05-2022. 2020. url:
http://ulrik.blog.aau.dk/hmk/.

[5] Alessandro Cimatti et al. “NUSMV: a new symbolic model checker”. In: International
journal on software tools for technology transfer. 2.4 (2000). issn: 1433-2779.



HAALT - HAWK and AALTITOAD Automatic Likeness Testing 21

[6] Johan Bengtsson et al. “UPPAAL in 1995”. In: International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems. Springer. 1996, pp. 431–434.

[7] Anders Hessel et al. “Testing real-time systems using UPPAAL”. In: Formal methods and
testing. Springer, 2008, pp. 77–117.

[8] Anders Hessel et al. “Time-optimal real-time test case generation using UPPAAL”. In:
International Workshop on Formal Approaches to Software Testing. Springer. 2003,
pp. 114–130.

[9] Anders Hessel and Paul Pettersson. “A Global Algorithm for Model-Based Test Suite
Generation”. In: Electronic Notes in Theoretical Computer Science 190.2 (2007). Proceedings
of the Third Workshop on Model Based Testing (MBT 2007), pp. 47–59. issn: 1571-0661.
doi: https://doi.org/10.1016/j.entcs.2007.08.005. url:
https://www.sciencedirect.com/science/article/pii/S1571066107005403.

[10] Willibald Krenn et al. “Momut:: UML model-based mutation testing for UML”. In: 2015
IEEE 8th International Conference on Software Testing, Verification and Validation (ICST).
IEEE. 2015, pp. 1–8.

[11] Dimitris Dranidis, Konstantinos Bratanis, and Florentin Ipate. “JSXM: A tool for automated
test generation”. In: International Conference on Software Engineering and Formal Methods.
Springer. 2012, pp. 352–366.

[12] Damiano Angeletti et al. “Using bounded model checking for coverage analysis of
safety-critical software in an industrial setting”. In: Journal of Automated Reasoning 45.4
(2010), pp. 397–414.

[13] Martin Leucker and Christian Schallhart. “A brief account of runtime verification”. In: The
Journal of Logic and Algebraic Programming 78.5 (2009). The 1st Workshop on Formal
Languages and Analysis of Contract-Oriented Software (FLACOS’07), pp. 293–303. issn:
1567-8326. doi: https://doi.org/10.1016/j.jlap.2008.08.004. url:
https://www.sciencedirect.com/science/article/pii/S1567832608000775.

[14] Cyrille Artho et al. “Combining test case generation and runtime verification”. In: Theor.
Comput. Sci. 336 (2005), pp. 209–234.

[15] Edmund Clarke, E. Emerson, and Joseph Sifakis. “Model checking”. In: Communications of
the ACM 52 (Nov. 2009). doi: 10.1145/1592761.1592781.

[16] Sonali Pradhan, Mitrabinda Ray, and Srikanta Patnaik. “Coverage criteria for state-based
testing: a systematic review”. In: International Journal of Information Technology Project
Management (IJITPM) 10.1 (2019), pp. 1–20.



22 F. Hyldgaard, G. Bruhns et al.



Appendices

23





Appendix A

Design of HAALT

In this appendix, we document the design considerations and implementation of HAALT.

1 Annotators

The design of the annotator classes is shown in Figure 10. The annotators are designed based on
the template pattern inspired by the semantics. A super class annotator contains two abstract
public methods annotate and CreateQueries, which are implemented by the respective sub classes,
where a sub class is defined for each type of coverage criteria. Additionally, the annotator class
contains methods to split each location into two and adding a connection edge according to the
semantics described in Section 7.

Annotator

-AnnotatedModel

+AnnotateAndCreateQueries()
+SplitAndConnectLocations()
+Annotate()
+CreateQueries()

Location Annotator

+Annotate()
+CreateQueries()

Edge Annotator

+Annotate()
+CreateQueries()

MCDC Annotator

-MCDC Pairs

+Annotate()
+CreateQueries()

Guard Parser

-Conditions

+MakeGuardSymbolic()

1

1..*

Fig. 10. Design of annotators for each coverage criteria.

2 MC/DC Annotator

The MC/DC pairs are found by first splitting a guard into all of its condition. For this task, a
guard parser was implemented, which given a guard, returns the guard split into its conditions,



26

where the conditions have template variable names. MC/DC pairs are found for each condition in
the guard, by testing each possible configuration, and testing if the condition evaluates the
decision. If it does, an MC/DC pair is found. For each pair, two queries and two edges are added
to the ATTA.

3 Guard-parser

In order to generate MC/DC pairs, a guard parser module for guards is implemented. The main
feature of the module is extracting the individual conditions of a guard as a dictionary and
creating a symbolic representation of the guard. The module is implemented as a top-down
recursive descent parser based on the ll(1) context free grammar in Appendix 3. Using this
method, a parse tree is created after which a series of tree walks reduce the tree and find
conditions seperated by disjunctions and conjunctions. Reductions include reducing logical
expressions such as A == B to a single auxiliary variable ci that symbolically represents the
condition. Note that the grammar does not enforce precedence between neither logical separators
nor arithmetic operators. This is because the symbolic representation of the guard preserves the
ordering of the conditions as well as placement of parentheses, and as such, the Python Eval
function is simply used to enforce precedence.

Guard ::= A

A ::= B A’
A’ ::= || A | && A | ϵ

B ::= C B’

B’ ::= == B | != B | ϵ

C ::= D C’

C’ ::= > C | < C | <= C | >= C | ϵ

D ::= E D’

D’ ::= + D | - D | * D | / D | % D | ϵ

E ::= G | - G | ! G

F ::= id | number | false | true | ( A )

4 Dependency graph

The dependency graph module is used to find all dependencies between components, as described
in Section 6. The module is instantiated by finding all dependencies between all components and
.parts files in the SafeCon III model. Dependencies are represented as a dependency graph, where
the nodes are components and edges go from usage to defintion. The module takes as input a set of
components to be tested and returns a set of variables that need to be made external based on the
set definitions in Section 6. An example of a dependency graph is shown in Figure 11, where
dependencies are shown between the component, the context (other components not part of the
test bundle), the main component, and the .parts files.



27

Fig. 11. Example of dependency subgraph. Dependencies are shown between Parts , Main , Context ,
and the component. Blue edges are reads, green edges are writes.

5 Modelcreator

The modelcreator module is responsible for taking the user specified components, and creating a
model consisting of only those components, which can then be annotated and run by HAWK and
AALTITOAD. This corresponds the conversion of a set of components T to a network of TTAs
described in Section 6. As shown in Figure 12, the modelcreator uses the dependency graph module
to find which variables to keep internal and which to make external. Additionally, because HAWK
allows for generic components, which can be instantiated with input parameters, the modelcreator
has to create a component for each instantiated component. This encompasses declaring variables
to the value of the input parameter of the component. To accomplish this, the modelcreator goes
through all of the specified components and creates a new component file that includes the relevant
declarations for internal variables, and external variables are placed in the parts file. Lastly, all of
the components are specified as subcomponents inside a newly generated main file.

Model Creator

-SubModel

+CreateSubModel()

Dependency Graph

-ExternalVariables
-InternalVariables

+CreateSubDependencyGraph()

1

1

Fig. 12. Design of model creator.



28

6 Comparer

The comparer is responsible for comparing the AALTITOAD trace with the HAWK trace, and
generating appropriate error/warning/success messages. The outputs are not immediately
comparable, due to differences in formatting standards and it therefor needs to be parsed.
Afterwards, each state in the traces are compared, which is the implementation of line 6 in
Algorithm 1. Since we want to give precise error and warning messages, we have multiple checks
for comparability. The different errors that can be found are:

– Different locations
– Different amount of states
– Different variables
– Different variable values

If an error is encountered, a long error message containing information about the found differences,
query, annotator, and both before and after states from HAWK and AALTITOAD are written to a
log file. If a warning is found, a similar message explaining the warnings is created and written to a
warning file. Lastly, a short message is written to the console summarizing the errors.

Comparer

-Instructions
-HAWKTrace
-AALTITOADTrace

+CompareTraces()

HAWK Parser

+ParseTrace()

AALTITOAD Parser

+ParseTrace()
+CreateInstructions()

1

1

1

1

Fig. 13. Design of trace comparer.


