
Randomized Reachability Analysis in Uppaal:
Fast Error Detection in Timed Systems∗

Andrej Kiviriga, Kim Guldstrand Larsen, and Ulrik Nyman

Aalborg University, Selma Lagerløfs Vej 300, 9220 Aalborg, Denmark
{kiviriga, kgl, ulrik}@cs.aau.dk

Abstract. We introduce Randomized Reachability Analysis – an effi-
cient and highly scalable method for detection of “rare event” states,
such as errors. Due to the under-approximate nature of the method, it
excels at quick falsification of models and can greatly improve the model-
based development process: using lightweight randomized methods early
in the development for the discovery of bugs, followed by expensive sym-
bolic verification only at the very end. We show the scalability of our
method on a number of Timed Automata and Stopwatch Automata mod-
els of varying sizes and origin. Among them, we revisit the schedulability
problem from the Herschel-Planck industrial case study, where our new
method finds the deadline violation three orders of magnitude faster:
some cases could previously be analyzed by statistical model checking
(SMC) in 23 hours and can now be checked in 23 seconds. Moreover, a
deadline violation is discovered in a number of cases that where previ-
ously intractable. We have implemented the Randomized Reachability
Analysis – and made it available – in the tool Uppaal.

Keywords: model-checking · randomized · state-space explosion · schedu-
lability analysis · timed automata · stopwatch automata.

1 Introduction

Formal verification of system designs in the form of model checking requires that
reliable formal models of a system are created. Apart form the ability to verify
formal queries, many model checking tools also give the modeller access to a
simulator in order to understand the model behavior. Throughout the process of
developing the models, a number of sanity queries can be used in the same way
as unit tests in software development. Verifying these queries repeatedly between
each addition to the model can be prohibitively time consuming, especially for
complex systems that often grow large and become difficult to analyze. In this
paper we present a solution to this problem.

∗Supported by the ERC Advanced Grant Project: LASSO: Learning, Analysis, Syn-
thesis and Optimization of Cyber-Physical Systems, and by the Villum Investigator
project S4OS: Synthesis of Safe, Small, Secure and Optimal Strategies for Cyber-
Phyiscal Systems.

2 A. Kiviriga et al.

The main contribution of this paper is the implementation of randomized
reachability analysis in the tool Uppaal. Randomized reachability analysis is a
non-exhaustive efficient technique for the detection of “rare event” states, such as
errors. The work is a continuation of [13] where similar randomized analysis was
applied to refinement checking. The method can analyse Timed Automata and
Stopwatch Automata models with the features already supported by Uppaal.
The randomized approach is based on repeated exploration of the model by
means of random walks and was inspired by [10]. It explores the state-space in
a light and under-approximate manner; hence, it can only perform conclusive
verification when a single trace can demonstrate a property. However, our ran-
domized method excels at reachability checking and in many cases outperforms
existing model-checking techniques by up to several orders of magnitude. The
benefits are especially notable in large systems where traditional model-checking
is often intractable due to the state-space explosion problem. Randomized reach-
ability analysis is particularly useful for an efficient development process: running
cheap, randomized methods early in the development to discover violations and
performing an expensive and exhaustive verification at the very end. Random-
ized reachability analysis supports the search for shorter traces which improves
the usability of discovered traces in debugging the model. We have implemented
randomized reachability analysis – and made it available – in the tool Uppaal [1].

Timed Automata models can also be used in the domain of schedulability,
which deals with resource management of multiple applications ranging from
warehouse automation to advanced flight control systems. Viewing these sys-
tems as a collection of tasks, schedulability analysis allows to optimize usage of
resources, such as processor load, and to ensure that tasks finish before their
deadline. A traditional approach in preemptive priority-based scheduling is that
of the worst-case response time (WCRT) analysis [12,5]. It involves estimat-
ing worst case scenarios for both the execution time of a task and the block-
ing time a task may have to spend waiting for a shared resource. Apart from
certain applicability limitations, classical response time analysis is known to
be over-approximate which may lead to pessimistic conclusions in that a task
may miss its deadline, even if in practice such a scenario could be unrealizable.
Model-based approach is a prominent alternative for verification of schedula-
bility [2,3,4,16] as it considers such parameters as offsets, release times, exact
scheduling policies, etc. Due to this, the model-based approach is able to provide
a more exact schedulability analysis.

We continue the effort in using a model-based approach and the model
checker Uppaal to perform a Stopwatch Automata based schedulability analy-
sis of systems [6]. Specifically, we re-revisit the industrial case study of the ESA
Herschel-Planck satellite system [16,8]. The Danish company Terma A/S [19] de-
veloped the control software and performed the WCRT analysis for the system.
The case we analyse consists of 32 individual tasks being executed on a single
processor with the policy of fixed priority preemptive scheduling. In addition, a
combination of priority ceiling and priority inheritance protocols is used, which
in essence makes the priorities dynamic. Preemptive scheduling is encoded in the

Randomized Reachability Analysis in Uppaal 3

model with the help of stopwatches which allow to track the progress of each task
and stop it when the task is preempted. In Uppaal, existing symbolic reachabil-
ity analysis for models with stopwatches is over-approximate, which may provide
spurious traces. In such models, our randomized reachability analysis allows to
obtain exact, non-spurious traces to target states.

In the previous work of [16] the schedulability of Herschel-Planck was “suc-
cessfully” concluded, but with an unrealistic assumption of each task having a
fixed execution time (ET). To improve on this, the analysis of [8] was carried out
with each of the tasks given a non-deterministic execution time in the interval of
[WCET,BCET]. Unfortunately, interval based execution times, preemption and
shared resources that impose dependencies between tasks, makes schedulability
of systems like Herschel-Planck undecidable [9].

Even in the presence of unschedulability, two model-checking (MC) tech-
niques were used in [8] to either verify or disprove schedulability for certain
intervals of possible task execution times. First, the symbolic, zone-based, MC
was used. Even though for stopwatch automata it is implemented as an over-
approximation in Uppaal which still suffices for checking of safety properties,
e.g. if the deadline violation can never be reached. However, this technique can-
not be used to disprove schedulability of the system as resulting traces may
possibly be spurious. Second, the statistical model-checking (SMC) technique
was used to provide concrete counterexamples witnessing unschedulability of
the model in cases where symbolic MC finds a potential deadline violation and
cannot conclude on schedulability. The idea of SMC [20,15] is to run multiple
sample traces from a model and then use the traces for statistical analysis which,
among all, estimates the probability of a property to be satisfied on a random
run of a model. The probability estimate comes with some degree of confidence
that can be set by the user among a number of other statistical parameters. Sev-
eral SMC algorithms that require stochastic semantics of the model have been
implemented in Uppaal SMC [7].

Table 1. Summary of schedulability of Herschel-Planck system.

f = BCET
WCET 0-71% 72-80% 81-86% 87-90% 90-100%

Symbolic MC: maybe maybe maybe n/a Safe

Statistical MC: Unsafe maybe maybe maybe maybe

Randomized MC: Unsafe Unsafe maybe maybe maybe

Our contribution to the Herschel-Planck case study is to use our proposed
under-approximate randomized reachability analysis techniques in hope to wit-
ness unschedulability in places where previously not possible. The summary of
(un)schedulability of Herschel-Planck that includes the new results is shown in
Table 1. Symbolic MC finds no deadline violation with over-approximate analy-
sis and is able to conclude schedulability for BCET

WCET ≥ 90%. SMC find a witness

4 A. Kiviriga et al.

of unschedulability for BCET
WCET ≤ 71%. Finally, our randomized reachability meth-

ods are able to further “breach the wall” of undecidable problem by discovering
concrete traces proving unschedulability for BCET

WCET ≤ 80%. Moreover, for the
same BCET

WCET , randomized reachability finds the deadline violation by three or-
ders of magnitude faster than SMC: the case that took 23 hours for SMC now
only takes 23 seconds with randomized methods.

To further verify the proposed efficient development process, we look at sev-
eral different models of the Gossiping Girls problem made by the Master’s thesis
students – future model developers – and explore the potential of our randomized
method. We also perform experiments on a range of other (timed and stopwatch
automata) models and compare the performance of our randomized reachabil-
ity analysis in “rare event” detection to that of existing verification techniques
of Uppaal: Breadth First Search (BFS), Depth First Search (DFS), Random
Depth First Search (RDFS) and SMC. The results are extremely encouraging
- randomized reachability methods perform up to several orders of magnitude
faster and scale significantly better with increasing model sizes. Furthermore,
randomized reachability uses constant memory w.r.t. the size of the model and
typically requires only up to 25MB of memory. This is a notable improvement in
comparison to the symbolic verification of upscaled and industrial sized models.
Each of the experiments in this study was given 16GB of memory.

The main contributions of the paper are:

– A new randomized reachability analysis technique implemented in Uppaal
– Detection of “rare event” states up to several orders of magnitude faster than

with other existing model-checking techniques
– Possibility to analyze previously intractable models, including particular set-

tings for the Herschel-Planck case study.
– Searching for shorter or faster traces with randomized reachability analysis.

The rest of the paper is structured as follows: In Section 2 we describe the
different randomized methods we tried in this study. Section 3 presents the new
results on the Herschel-Planck industrial case study and Section 4 provides more
experimental results on other schedulability models. Section 5 demonstrates the
efficiency of our randomized method applied on student models of the Gossiping
Girls problem and Section 6 gives the results on other upscaled models. Finally,
Sections 7 and 8 give conclusions and future work.

2 Randomized Reachability Analysis

The purpose of the randomized methods is to explore the state-space quickly
and be less affected by the state-space explosion. The method is based on a re-
peated execution of concrete-state based random walks through the system. Each
random walk is quick and lightweight as it avoids expensive computations of sym-
bolic zone-based abstractions and does not store any information about already
visited states in memory. The flaw of such analysis is its under-approximate na-
ture of exploration which does not allow to conclude on reachability if the target

Randomized Reachability Analysis in Uppaal 5

state has never been found. However, the results of [13] hint that randomized
reachability analysis has a potential to provide substantial performance improve-
ments in comparison to existing model-checking techniques.

An already existing method of SMC tries to give valid statistical predictions
based on stochastic semantics. SMC is very similar to the randomized method as
it performs cheap, non-exhaustive simulations of the model. In cases where sym-
bolic model-checking techniques of Uppaal are expensive or even inconclusive
(for stopwatch automata), SMC is often used as a remedy to provide concrete
traces to target states. The stochastic semantics SMC operates on allows for a
model to mimic the behavior of a real system; however, this may not be efficient
for detection of “rare event” states. Consider the timed automaton model in Fig-
ure 1 with the Goal location representing the target state we want to discover.
The guard x<=1 on the edge leading to Goal requires clock x to be at most of
1 time unit. According to stochastic semantics, at the starting location Init
SMC would select a delay uniformly in range [0, 1000], which is bounded by the
invariant x<=1000. This leaves a probability of 1

1000 to discover Goal in 1 step;
Alternatively, the “loop” edge is taken which resets clock x with the update x=0
thus resetting all the progress back to the initial state.

Fig. 1. Timed Automaton model with a Goal target state.

We aim to improve the efficiency of detecting “rare event” states with our new
randomized method by experimenting with several different randomized heuris-
tics and examining their efficiency through extensive experimental evaluation. A
heuristic in this case dictates how a random walk is performed, i.e. how delays
and transitions are chosen. The summary of the heuristics and their status is
given in Table 2. We now explain each heuristic in detail.

Table 2. Randomized reachability analysis heuristics.

Acronym Name Origin Status

SEM Semantic exploration New Only experiments

RET Random Enabled Transition [13] Implemented in Uppaal

RLC Random Least Coverage New Only experiments

RLC-A Random Least Coverage
Accumulative

New Only experiments

6 A. Kiviriga et al.

SEM An intuitive heuristic we tried, denoted as SEM, is based on the natural
semantic exploration of the system. A meaningful delay, i.e. a delay that leads
to an enabled transition, is selected uniformly at random and then a transition
is picked uniformly from those available after the chosen delay has been made.
In the model from Figure 1, SEM would choose a delay uniformly from two
ranges – [0, 1] and [901, 1000], thus having a probability of 1

100 to reach Goal in
1 step. Overall, we believe this heuristic will struggle the most in systems where
certain specific delays are required to reach a target state, e.g. delaying exactly
the lower or upper bound of the transition’s availability range.

Differently from SEM, the heuristics we describe further (RET, RLC and
RLC-A) require selecting a target transition first. The exact delay is then chosen
only from that target transition’s range of available delays. Selecting transition
first makes exploration of the state-space more uniform and removes a bias to-
wards transitions with larger availability range. The mechanism for choosing
delays is common between the heuristics presented below and will be described
later in this section.

RET As a continuation of our work on randomized techniques from [13]
we implement them in Uppaal for both Timed and Stopwatch Automata. The
study proposed two different heuristics for selecting a target transition. A heuris-
tic denoted as RET (Random Enabled Transition) selects one of the eventually
enabled transitions, i.e. transitions that are either currently enabled or will be-
come such after a delay, uniformly at random. This means that at each step
each transition is equally likely to be selected. When used in the model from
Figure 1, RET would first choose one of the two transitions at random, having
a probability of 1

2 to reach the Goal location in 1 step.

RLC, RLC-A Here we introduce a heuristic denoted as RLC that chooses
a transition with the least coverage for the sending edge. If there is more than
one such transition, RLC picks one uniformly at random. In systems that are
cyclic or contain multiple loops, RLC provides a more uniform exploration of
the state-space which may be useful for some models. Consider the model from
Figure 2 that uses two integer variables i and j. The only initially available
edge is the bottom loop edge at the Init location which increments the variable
i by 1 upon each traversal. Once i==2, the leftmost loop edge can be taken,
resulting in a reset of i and increment of j (i=0,j++). Crucially, if the variable
i is incremented above the value 2, the leftmost loop edge becomes permanently
unavailable. Hence, to reach Goal the leftmost edge has to be taken as soon as it
becomes available and at least 7 times (j>=7) in one run. Since the coverage of the
leftmost edge is always lower, the probability for RLC heuristic to discover Goal
in 1 random walk is 100% while for RET it is less than 1%. The coverage counters,
however, are reset at the start of a random walk, making each subsequent run
independent of the previous one. We also experiment with a similar heuristic
that does not reset the coverage counters and instead keeps them shared among
all of the random walks. We denote such accumulative heuristic as RLC-A.

Randomized Reachability Analysis in Uppaal 7

Fig. 2. Timed Automaton model of a difficult case for RET heuristic.

Other randomized methods investigated A number of tokenized heuris-
tics, inspired by [14], have been attempted with the intent of storing a small,
fixed number of tokens in a clever way to increase the likelihood of reaching the
target state faster. Unfortunately, as no considerable improvements have been
observed we decided to exclude these heuristics and leave them as future work.

We have also tried using traces of symbolic MC of Uppaal from verification
of the Herschel-Planck model to guide the random walks towards the target
state. However, even with the RDFS search strategy, all of the symbolic traces
have appeared to be spurious due to the over-approximate analysis of stopwatch
automata. Hence, we could not gain any useful results with this approach.

To reduce resource demands for the most expensive operation in a random
walk – computation of eventually enabled transitions – an alternative heuristic
to RET was used in [13] denoted as RCF (Random Channel First). Instead of
computing all eventually enabled transitions, RCF first randomly picks a chan-
nel and only computes transitions labeled with that channel. However, during
implementation of these techniques in Uppaal it became clear that the RCF
does not give performance advantages over RET due to the differences in the
underlying data structures of Uppaal and Java prototype from [13]. Therefore,
we got rid of the RCF heuristic.

Choosing delay A naive way of choosing delays – uniformly at random from
a given range – is likely to not be very efficient. While in some systems that are
either small or not sensitive to specific delay values reaching target state can be
doable, in more complex models such a strategy may not be optimal. In [13] we
experimented with a few different strategies for choosing delay values, such as
1) uniformly at random, 2) based on predefined probability distribution and 3)
based in changing (adapting) delay probability distributions. The experiments
have shown the first strategy to be the least efficient, whereas the third one has
shown the most potential. Hence, we reuse the third strategy here with slight
modifications for RET, RLC and RLC-A heuristics.

The idea behind the adaptive delay choice algorithm is the following: the de-
lays are drawn in accordance to some predefined delay probability distribution
which changes on each unsuccessful random walk. Such distribution in this case
defines probability for lower bound (LB), upper bound (UB) or the values in be-
tween the bounds to be chosen. For example, a distribution of 40% LB/40% UB
means that it is equally probable that either LB or UB will be selected as a delay,
while leaving 20% chance for intermediate delay to be chosen uniformly at ran-
dom from the range that excludes the bounds. Table 3 shows the sequence delay

8 A. Kiviriga et al.

probability distributions used in this study. Upon reaching the last distribution
in the sequence, the next random walk starts from the first one.

Table 3. Delay probability distributions used for RET, RLC and RLC-A.

Sequence 1 2 3 4 5 6 7 8 9 10 11
Lower bound 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 40%

Uniform 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 20%
Upper bound 40% 30% 20% 10% 0% 100% 90% 80% 70% 60% 40%

Previously, the cycle of delay probability distributions did not leave any room
for intermediate time delays, considering only LB or UB values. The downside is
that for some systems it means that parts of the state-space become unreachable
by the algorithm; however, experiments have shown this strategy to be surpris-
ingly efficient. To eliminate the flaw of intermediate delay values never being
chosen, here we add a 40% LB/40% UB probability distribution, leaving 20%
chance to select an intermediate time value. As the result, a target state, if one
exists, will be eventually found in any system.

Random walk depth To explore the state-space gradually and reduce the
risk of a random walk being stuck in an isolated part of the state-space with no
target state, we increase the random walk depth dynamically as the exploration
continues. Specifically, the first batch of random walks at most can perform 24

steps. After the full cycle of delay probability distributions is completed, the
random walks in the next cycle have their maximum allowed depth doubled, but
no further than 218 steps. Should one have some apriori knowledge of the system,
it is also possible to manually set the maximum allowed depth in Uppaal that
is a constant value used for all of the conducted random walks.

Shorter or Faster trace Since our techniques cannot disprove reachabil-
ity of a target state due to under-approximate analysis, searching for errors in
large systems, where symbolic techniques struggle, is one of the main expected
applications. To aid developer in analyzing error traces and fixing systems, we
implement an option to search for an optimal trace being the either shortest, in
the size of steps, or the fastest, in the amount of total delay. With either one of
these options selected, the algorithm searches for the initial trace and afterwards
restricts all subsequent random walks to the current smallest amount of steps or
delay discovered. Every randomized heuristic can be used with the shortest or
fastest option and we refer to those by appending “-S” or “-F”, e.g. RET-S.

In symbolic model-checking, searching for an optimal trace requires an ex-
haustive exploration of the state-space. Thus, for larger systems, it often dras-
tically increases time and memory demands up to an extent where it becomes
impractical. As opposed to that, our randomized techniques do not require more
memory as the old trace is being discarded as soon as the new, more optimal

Randomized Reachability Analysis in Uppaal 9

one is discovered. On the down side, being a non-exhaustive technique the ran-
domized search cannot guarantee that any discovered trace is indeed the most
optimal, endlessly continuing the search. In Uppaal we let the user provide
timeout value (in seconds) which is defaulted to 300 seconds.

3 New Results on Herschel-Planck

According to previous results on Herschel-Planck model [8], symbolic MC con-
firmed schedulability for f = BCET

WCET ≥ 90%. However, symbolic MC cannot
be used for disproving schedulability due to over-approximate analysis of au-
tomata with stopwatches, used to encode preemption. Thus, SMC was used
to generate concrete counterexamples, disproving schedulability for f ≤ 71%.
For the rest of f ∈ (71%, 90%) both symbolic and statistical MC were incon-
clusive due to either over-approximation or burden in computation time, re-
spectively. All of the models used in the experiments are made available at:
http://people.cs.aau.dk/~ulrik/submissions/874325/FMICS2021.zip

Table 4. Average time to detect non-schedulability in Herschel-Planck (in seconds).
SMC search is limited to 160, 640 or 1280 cycles of 250ms.

f(%) SMC(160) SMC(640) SMC(1280) SEM RET RLC RLC-A
68 3378.82 3656.0 2626.11 nf 14.1 14.35 14.48
69 6087.64 3258.13 3565.49 nf 15.91 14.32 13.7
70 19408.04 16875.89 24322.69 nf 17.59 14.47 14.77
71 85837.23 nf nf nf 22.54 16.56 16.75
72 nf nf nf nf 27.81 18.42 18.96
73 nf nf nf nf 31.56 20.66 20.68
74 nf nf nf nf 52.53 38.08 40.31
75 nf nf nf nf 72.16 61.98 68.35
76 nf nf nf nf 83.12 328.03 327.32
77 nf nf nf nf 375.08 nf nf
78 nf nf nf nf 1155.50 nf nf
79 nf nf nf nf 2009.01 nf nf
80 nf nf nf nf 11194.43 nf nf
81 nf nf nf nf nf nf nf

In our experiments we compare SMC to our randomized reachability analysis
techniques in attempt to detect non-schedulability in Herschel-Planck model for
varying execution times in the interval of [f ·WCET,WCET]. The results are
shown in Table 4 with each test case given 48 hours. As the f value gets higher
we see the expected growth in computational demands with f = 71% requiring
just under 24 hours for SMC to disprove schedulability, confirming results of [8].
On the other hand, 3 out of 4 of our randomized heuristics were able to detect
an error for the same setting of f = 71% in less than 23 seconds, improving on

http://people.cs.aau.dk/~ulrik/submissions/874325/FMICS2021.zip

10 A. Kiviriga et al.

Table 5. Trace length comparison.

f(%) RET RET-S Timeout

68 6882 560 1h
69 7619 568 1h
70 8285 572 1h
71 10411 570 1h
72 12394 571 1h
73 15937 578 1h
74 26605 1549 1h
75 41003 1546 1h
76 40154 1529 1h
77 97258 1536 1h
78 119939 1540 5h
79 129387 1536 5h
80 145493 6455 20h

performance of SMC by three orders of mag-
nitude. Furthermore, RET heuristic appeared
to give the best results, witnessing unschedu-
lability for values of f up to and including
80%. We have also tried running longer ex-
periments of up to 7 days for f = 81%, but
no errors were discovered which hints at pos-
sibility of the Herschel-Planck system being
schedulable for f > 80%. The SEM heuristic
turned out to be the least efficient one, fail-
ing to discover any errors, which is likely due
to the exponentially small probability of hit-
ting the “right” time windows with chosen de-
lays. Overall, these experiments showcase the
strength of randomized reachability analysis
being fit as a part of an efficient development
process that speeds up falsification of models.

Once a trace leading to an error is discovered, it might be in the interest
of a developer to analyze it to find the cause for the error. The trace, however,
can be arbitrarily long, especially for larger systems, making its analysis difficult
in practice. In our next experiment we look at the average length of traces
found for Herschel-Planck system and compare RET heuristic from experiments
in Table 4 against the version of RET with the shortest trace option enabled
- RET-S. In order for non-exhaustive exploration of RET-S to terminate, we
specify the Timeout value and increase it w.r.t. to the average time required by
RET to find an error. The results are shown in Table 5. With the given timeout,
RET-S shortens the length of the trace by a factor of 12 at minimum. Note that
for f ∈ [75%, 79%] the length of the shortest discovered trace is approximately

5*103

10*103

15*103

20*103

25*103

30*103

35*103

 0 200 400 600 800 1000

Tr
a
ce

 l
e
n
g

th

Time (in sec)

T

T T T T

Fig. 3. 10 runs of RET-S for Herschel-Planck with f = 75%.

Randomized Reachability Analysis in Uppaal 11

the same – just under 1600 – while the effort to discover such trace is roughly
proportional to the average time to detect the first trace (as shown in Table 4).

The exact value of the timeout has to be decided on by the user which may not
be an easy parameter to estimate in the setting of randomized and unpredictable
exploration. To better understand how RET-S behaves, we plot 10 runs of RET-
S for Herschel-Planck system with f = 75% in Figure 3. In average it took 263.14
seconds to find a trace of sub 1600 steps, while the longest run took 970 seconds.

4 More Schedulability

As already stated, application of symbolic techniques to stopwatch models may
provide spurious traces due to over-approximate analysis of Uppaal. If the target
state in these models is potentially reachable, we can use SMC to generate
concrete and exact traces witnessing the reachability of the goal state. However,
SMC can only be applied to systems with broadcast channels as required by
stochastic semantics SMC operates on. In stopwatch models that use handshake
channels, our randomized methods become the only solution that can perform
a more exact reachability analysis.

We consider more schedulability systems modelled as stopwatch automata.
Table 6 shows experiments for two different sets of schedulability problems:
ARINC-653 partition scheduling of integrated modular avionics systems [11]
(denoted as IMAOptim) and schedulability of Java bytecode systems, originat-
ing from TetaSARTS project [21], that are encoded as networks of automata
and represent the original layered structure of Java bytecode systems. Our ran-
domized methods discover the target state within 20 seconds even for a huge
system with almost 12 thousands of locations, where other techniques are either
not applicable or run out of memory.

Table 6. Average time to find target state in stopwatch automata models.
Symbolic MC techniques provide potentially spurious traces.

Model #loc BFS DFS RDFS SMC SEM RET RLC RLC-A
IMAOptim-0 88 0.09 0.1 0.07 0.04 0.07 0.1 0.1 0.08
IMAOptim-1 88 0.21 0.2 0.08 0.05 0.05 0.08 0.08 0.06
IMAOptim-2 88 0.21 0.26 0.09 0.06 0.08 0.11 0.11 0.1
md5-jop 594 0.25 10.8 6.53 n/a 0.15 0.18 0.18 0.12
md5-hvmimp 476 0.41 0.85 0.49 n/a 0.1 0.14 0.14 0.09
md5-hvmexp 11901 oom oom oom n/a 14.17 19.85 20.18 8.71
MP-jop 371 0.39 0.14 0.12 n/a 0.08 0.12 0.12 0.09
MP-hvmimp 371 0.35 0.14 0.12 n/a 0.08 0.12 0.12 0.09
MP-hvmexp 4388 oom oom oom n/a 13.49 22.95 21.99 8.59
simplerts-opt 409 oom oom oom n/a 2.43 1.48 nf nf

12 A. Kiviriga et al.

5 Gossiping Girls

As claimed earlier, the randomized reachability analysis can serve as a useful
tool particularly for an efficient development process. It can be used early in
the development, as well as in late stages, for a quick falsification of models, i.e.
discovery of errors or checking if another “rare event” state is actually reachable
in practice.

To test the efficiency of our randomized methods and challenge them with
different model development styles, we look at models of the same problem
created by different developers. Specifically, we consider the Gossiping Girls
problem, where a number of girls n each know a distinct secret and wish to share
it with the rest of the girls. They can do so by calling each other and exchanging
either only their initial or all of currently known secrets. The girls are organized
as a total graph, allowing them to talk with each other concurrently, but with a
maximum of 2 girls per call. Some variations of the problem have specific time
constraints on the duration of the call or exhibit a different secret exchange
pattern, but all with the same final goal of all the girls discovering all of the
secrets. This is a combinatorial problem with each girl having a string of n bits
which can at most take 2n values. For a total of n girls this amounts to a string
of n2 with at most 2n

2

values. This makes it an incredibly hard combinatorial
problem which, when scaled up, quickly exposes the limits of symbolic model-
checking due to the state-space explosion problem.

We have gathered 10 models of the Gossiping Girls problem made by Mas-
ter’s thesis students as the final assignment for the course on model-checking at
Aalborg University in Denmark. These students represent potential future model
developers and we use their model to further experiment on applicability of the
randomized methods. The implementation details vary from model to model,
including timing constraints and secret exchange patterns. We leave the models
unchanged and only scale them up to a certain amount of nodes to challenge
both symbolic and randomized methods.

We first experiment on the models scaled up to 8 girls and look for a state with
of all the girls having exchanged their secrets, while bounded by a certain global
time constraint. The results are shown in Table 7 where each cell represent the
average time for each found trace within 2 hours. For 9 out of 10 of the models
our randomized heuristic RET shows a massive improvement in performance
compared to symbolic methods, whereas in 1 model the performance is on the
same level. Since the problem is time constrained, the worst performance is that
of SEM heuristic which fails to find our target state due to an inefficient way
of selecting delays. Importantly, for some models some of the RDFS runs were
“lucky” to discover the target state almost immediately, while other “unlucky”
tries instead ran out of memory (oom). The oom attempts of RDFS contribute
to the performance by noticeably dragging up the average time to find the goal
state. Another important factor is memory: unlike symbolic methods, that are
given 16GB of memory, our randomized techniques do not run out of memory
as its usage is constant w.r.t to the size of the model and amounts to at most
14MB for any of the heuristics for this set of experiments.

Randomized Reachability Analysis in Uppaal 13

Table 7. Gossiping Girls with 8 nodes. Each cell represent avg. time for each found
trace within 2 hours. Searching for a state with all secrets shared within a certain time.

Model BFS DFS RDFS SEM RET RLC RLC-A
Gosgirls-1 oom oom 697.13 nf 0.39 6949.95 nf
Gosgirls-2 oom oom 0.02 nf 0.04 0.04 0.04
Gosgirls-3 oom oom 44.49 nf 0.02 0.02 0.09
Gosgirls-4 oom oom 28.35 nf 0.03 0.03 nf
Gosgirls-5 oom oom 229.98 nf 0.02 0.02 0.02
Gosgirls-6 oom oom 64.00 nf 3.71 167.44 1530.99
Gosgirls-7 oom oom 55.61 nf 0.17 15.16 15.6
Gosgirls-8 oom oom 13.96 nf 0.04 0.03 0.03
Gosgirls-9 oom oom 2.08 nf 0.08 0.07 0.08
Gosgirls-10 oom oom 598.64 nf 0.24 1.72 nf

Discovery of the state where all the secrets are known is arguably an easy
target as such state will eventually always appear as we traverse the state-space.
This also explains why RDFS was sometimes “lucky” to detect the searched
state before it ran out of memory. We now experiment with searching for a
particular configuration of secrets in models with 6 girls and show results in
Table 8. Concretely, we divide the 6 girls into two clusters of 2 and 4 girls, and
search for a state where each girl knows all the secrets of the other girls in the
same cluster, but none from the other cluster. Such a state occurs less often
in the state-space and is easy to miss, making it a more challenging problem;
Hence, only 6 girls are considered. Unlike in previous experiments, the most
efficient symbolic search strategy is different for each individual model due to
the variance in model implementations. The randomized methods appear largely
superior in almost all cases, with the RET heuristic being the most consistent
and efficient across all the models. Note that even for 6 girls in a lot of cases
symbolic techniques still run out of memory, whereas our random methods use
less than 15MB.

Table 8. Gossiping Girls with 6 nodes. Each cell represent avg. time for each found
trace within 2 hours. Searching for a particular configuration of secrets known.

Model BFS DFS RDFS SEM RET RLC RLC-A
Gosgirls-1 16.98 oom oom 2.17 1.35 1.60 0.23
Gosgirls-2 0.04 oom 360.43 0.04 0.04 0.04 0.04
Gosgirls-3 77.96 oom oom nf 1.44 0.19 0.10
Gosgirls-4 oom oom oom nf 0.03 0.02 nf
Gosgirls-5 oom oom oom nf 0.02 0.02 0.02
Gosgirls-6 oom 244.66 2596.62 5.92 7.10 nf nf
Gosgirls-7 oom oom oom nf 0.14 75.44 141.20
Gosgirls-8 32.63 oom oom nf 0.11 3.24 505.99
Gosgirls-9 oom oom 199.77 0.10 13.04 3.65 2.07
Gosgirls-10 oom oom 209.36 nf 0.02 0.03 0.04

14 A. Kiviriga et al.

6 Scalability Experiments

We further investigate the efficiency of our randomized methods on a set of
standard Uppaal timed automata models. The models are scaled up in order to
challenge both symbolic and randomized techniques and the results are provided
in Table 9. The results are truly impressive – randomized methods perform up
to 4 orders of magnitude faster and scale significantly better.

Table 9. Average time to find target state in Timed Automata.

Model BFS DFS RDFS SEM RET RLC RLC-A
csma-cd-20N 20.2 oom 0.02 0.03 0.07 0.06 0.21
csma-cd-22N 37.48 oom oom 0.03 0.08 0.08 0.31
csma-cd-25N 91.0 oom oom 0.05 0.09 0.1 0.55
csma-cd-30N 313.54 oom oom 0.05 0.12 0.19 1.43
csma-cd-50N oom oom oom 0.46 0.84 1.19 15.29
Fischer-10N 0.9 22.84 4.3 0.04 0.05 1.21 nf
Fischer-15N 8.35 6037.63 9038.96 0.09 0.09 5.06 nf
Fischer-20N 72.61 oom oom 0.3 0.28 17.28 nf
Fischer-25N 452.45 oom oom 0.64 0.73 36.93 nf
Fischer-50N oom oom 90.01 21.78 23.79 233.67 nf
FischerME-10N 7.15 0.14 0.02 0.01 0.02 0.01 0.02
FischerME-15N oom 11.45 0.05 0.04 0.04 0.03 0.16
FischerME-20N oom 970.33 0.4 0.11 0.09 0.05 0.04
FischerME-25N oom oom 83.29 0.25 0.21 0.08 0.07
FischerME-50N oom oom 174.32 14.87 15.26 0.49 4.04
LE-Chan-3N 0.03 0.35 0.04 0.01 0.01 0.01 0.01
LE-Chan-4N oom oom 107.7 0.95 0.54 4.36 0.07
LE-Chan-5N oom oom 1167.41 53.21 31.38 102.08 nf
LE-Hops-3N 0.02 0.02 0.02 0.01 0.01 0.01 0.01
LE-Hops-4N oom oom oom 49.40 14.57 428.96 1588.33
LE-Hops-5N oom oom 1108.15 63.44 35.15 36.49 49.00
Milner-N100 0.45 0.16 2.72 nf 0.11 0.11 0.12
Milner-N500 44.44 10.56 1619.75 nf 1.19 1.2 1.43
Milner-N1000 488.41 110.35 36455.73 nf 4.44 4.45 4.59
Train-200N oom 5.64 6.06 5.91 5.4 16699.98 nf
Train-300N oom 28.19 30.28 25.62 26.53 nf nf
Train-400N oom 85.22 90.66 67.91 70.87 nf nf
Train-500N oom 210.89 223.13 181.99 188.9 nf nf
Train-1000N nf 3461.17 3542.08 2192.12 2541.57 nf nf
Train-2000N nf 71286.92 oom 19229.02 23233.21 nf nf

Even though the SEM heuristic shows the best performance of many models,
its inefficient way of selecting delays causes it to completely miss target states
on some models as demonstrated by all of the experiments in this study. Due to
under-approximation, it is possible to construct “evil” examples for any heuristic,
rendering it inefficient. We then make all of the heuristics available in Uppaal.

Randomized Reachability Analysis in Uppaal 15

7 Conclusion

We have presented a new method of randomized reachability analysis in the
domain of model-based verification. The method excels at detection of “rare
event” states, such as errors, by means of quick and lightweight random walks
through the system. Randomized reachability analysis explores the state-space in
an under-approximate manner and can only conclude on reachability if the target
state is discovered. However, in many cases this method significantly outperforms
other existing techniques at reachability checking. Randomized reachability anal-
ysis is therefore a very useful addition to the process of model development: it
provides an efficient way of checking models for potential bugs or violations dur-
ing the development and can be followed by exhaustive and expensive symbolic
verification at the very end. The randomized method also supports the search
for either shorter or faster trace to the target state, which improves the process
of debugging the model. The randomized reachability analysis is implemented
and made available for use in the model checker Uppaal.

To validate the efficiency of our method, we have performed extensive ex-
periments on models of varying size and origin. The results are extremely en-
couraging: randomized reachability analysis discovers “rare event” states up to
several orders of magnitude faster. In particular, a case that could previously
be analyzed by SMC in 23 hours now only takes 23 seconds. Moreover, our ran-
domized methods discover traces to target states in cases that were previously
intractable by any of the existing techniques either due to state-space explosion
or inconclusiveness in verification of stopwatch models.

8 Future Work

Further investigations into tokenized, coverage-based and guided methods can
be done to improve the efficiency of the method. Some combinations of static
analysis of the models with either fixed or dynamic look-ahead for the random
walk could result in better performance of the method.

One future goal is to perform a more thorough and independent user evalua-
tion of the benefits of the randomized reachability analysis. This could indicate
the need for more parameters to be manually set by the user, such as custom
delay probability distribution, or could highlight other areas for improvement of
randomized methods.

Automatic sanity checks is another improvement that can noticeably enhance
the user experience and aid during model development. An implementation [17]
for Uppaal of such sanity checks has been undertaken as a master thesis project
[18] in the Formal Methods & Tools group at University of Twente. This report
demonstrates the usefulness of such sanity checks and highlights the need for
quick feedback to the tool user. Our randomized method is highly suitable for
this purpose.

16 A. Kiviriga et al.

References

1. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems, Inter-
national School on Formal Methods for the Design of Computer, Communication
and Software Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004,
Revised Lectures. Lecture Notes in Computer Science, vol. 3185, pp. 200–236.
Springer (2004). https://doi.org/10.1007/978-3-540-30080-9_7

2. Boudjadar, A., David, A., Kim, J., Larsen, K., Mikučionis, M., Nyman, U.,
Skou, A.: Statistical and exact schedulability analysis of hierarchical schedul-
ing systems. Science of Computer Programming 127, 103–130 (May 2016).
https://doi.org/10.1016/j.scico.2016.05.008

3. Boudjadar, A., David, A., Kim, J., Larsen, K., Mikučionis, M., Nyman,
U., Skou, A.: A reconfigurable framework for compositional schedulabil-
ity and power analysis of hierarchical scheduling systems with frequency
scaling. Science of Computer Programming 113(3), 236–260 (Dec 2015).
https://doi.org/10.1016/j.scico.2015.10.003

4. Brekling, A., Hansen, M.R., Madsen, J.: Moves — a framework for modelling and
verifying embedded systems. In: 2009 International Conference on Microelectronics
- ICM. pp. 149–152 (2009). https://doi.org/10.1109/ICM.2009.5418667

5. Burns, A.: Preemptive Priority-Based Scheduling: An Appropriate Engineering
Approach, p. 225–248. Prentice-Hall, Inc., USA (1995)

6. David, A., Illum, J., Larsen, K.G., Skou, A.: Model-based framework for schedu-
lability analysis using uppaal 4.1. Model-based design for embedded systems 1(1),
93–119 (2009)

7. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. International Journal on Software Tools for Technology Transfer 17(4),
397–415 (2015)

8. David, A., Larsen, K.G., Legay, A., Mikucionis, M.: Schedulability of herschel-
planck revisited using statistical model checking. In: Margaria, T., Stef-
fen, B. (eds.) Leveraging Applications of Formal Methods, Verification and
Validation. Applications and Case Studies - 5th International Symposium,
ISoLA 2012, Heraklion, Crete, Greece, October 15-18, 2012, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 7610, pp. 293–307. Springer
(2012). https://doi.org/10.1007/978-3-642-34032-1_28, https://doi.org/10.1007/
978-3-642-34032-1_28

9. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedula-
bility, decidability and undecidability. Information and Computation 205(8),
1149–1172 (2007). https://doi.org/https://doi.org/10.1016/j.ic.2007.01.009, https:
//www.sciencedirect.com/science/article/pii/S0890540107000089

10. Grosu, R., Smolka, S.A.: Monte Carlo Model Checking. In: Halbwachs, N., Zuck,
L.D. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 271–286. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

11. Han, Pujie and Zhai, Zhengjun and Nielsen, Brian and Nyman, Ulrik: Model-based
optimization of arinc-653 partition scheduling. International Journal on Software
Tools for Technology Transfer (Feb 2021). https://doi.org/10.1007/s10009-020-
00597-6, https://doi.org/10.1007/s10009-020-00597-6

12. Joseph, M., Pandya, P.: Finding Response Times in a Real-Time System. The Com-
puter Journal 29(5), 390–395 (01 1986). https://doi.org/10.1093/comjnl/29.5.390,
https://doi.org/10.1093/comjnl/29.5.390

https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1016/j.scico.2016.05.008
https://doi.org/10.1016/j.scico.2015.10.003
https://doi.org/10.1109/ICM.2009.5418667
https://doi.org/10.1007/978-3-642-34032-1_28
https://doi.org/10.1007/978-3-642-34032-1_28
https://doi.org/10.1007/978-3-642-34032-1_28
https://doi.org/https://doi.org/10.1016/j.ic.2007.01.009
https://www.sciencedirect.com/science/article/pii/S0890540107000089
https://www.sciencedirect.com/science/article/pii/S0890540107000089
https://doi.org/10.1007/s10009-020-00597-6
https://doi.org/10.1007/s10009-020-00597-6
https://doi.org/10.1007/s10009-020-00597-6
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1093/comjnl/29.5.390

Randomized Reachability Analysis in Uppaal 17

13. Kiviriga, A., Larsen, K.G., Nyman, U.: Randomized refinement checking of timed
I/O automata. In: Pang, J., Zhang, L. (eds.) Dependable Software Engineering.
Theories, Tools, and Applications - 6th International Symposium, SETTA 2020,
Guangzhou, China, November 24-27, 2020, Proceedings. Lecture Notes in Com-
puter Science, vol. 12153, pp. 70–88. Springer (2020). https://doi.org/10.1007/978-
3-030-62822-2_5, https://doi.org/10.1007/978-3-030-62822-2_5

14. Larsen, K., Peled, D., Sedwards, S.: Memory-Efficient Tactics for Randomized LTL
Model Checking. In: Paskevich, A., Wies, T. (eds.) Verified Software. Theories,
Tools, and Experiments. pp. 152–169. Springer International Publishing, Cham
(2017)

15. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) Runtime Verification. pp. 122–135. Springer
Berlin Heidelberg, Berlin, Heidelberg (2010)

16. Mikučionis, M., Larsen, K.G., Rasmussen, J.I., Nielsen, B., Skou, A., Palm, S.U.,
Pedersen, J.S., Hougaard, P.: Schedulability analysis using uppaal: Herschel-planck
case study. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification, and Validation. pp. 175–190. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

17. Onis, R.: UrPal. https://github.com/utwente-fmt/UrPal, Accessed: 2021-05-18
18. Onis, R.: Does your model make sense? : Automatic verification of timed systems

(December 2018), http://essay.utwente.nl/77031/
19. Palm, S.: Herschel-planck acc asw: sizing, timing and schedulability analysis. Tech.

rep., Tech. rep., Terma A/S (2006)
20. Sen, K., Viswanathan, M., Agha, G.: Statistical Model Checking of Black-Box

Probabilistic Systems. In: Alur, R., Peled, D.A. (eds.) Computer Aided Verifica-
tion. pp. 202–215. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

21. Søe Luckow, K., Bøgholm, T., Thomsen, B.: A Flexible Schedulability Analysis
Tool for SCJ Programs. http://people.cs.aau.dk/~boegholm/tetasarts/, Accessed:
2021-05-07

https://doi.org/10.1007/978-3-030-62822-2_5
https://doi.org/10.1007/978-3-030-62822-2_5
https://doi.org/10.1007/978-3-030-62822-2_5
https://github.com/utwente-fmt/UrPal
http://essay.utwente.nl/77031/
http://people.cs.aau.dk/~boegholm/tetasarts/

	Randomized Reachability Analysis in Uppaal: Fast Error Detection in Timed Systems

