
Tick Tock Automata
a Modelling Formalism for Real World Industrial Systems

Asger Gitz-Johansen
Department of Computer Science at Aalborg University

Denmark
Email: agitzj16@student.aau.dk

Abstract: Many software intense industry systems are safety
critical, meaning even small errors can lead to catastrophical
scenarios. Such systems are ripe for reaping the benefits of
model checking and verification techniques. We present a
real-world inspired reactionary semantics in the form of an
automata based theory that we call Tick Tock Automata, sup-
porting verification techniques such as reachability analysis.
The theory is based on a specific use case, in collaboration
with the truck production company HMK Bilcon A/S, where
a domain specific modeling language have been developed to
support a Model Based Development (MBD) pipeline.

I. INTRODUCTION

Industrial software is typically safety critical, meaning that
even minor errors can result in catastrophic scenarios. But
software development is a human craft, and humans make
mistakes and hence errors will inevitably propagate. The
industry already have a lot of ways to mitigate the introduction
of errors: Static code analysis tools, clever compilers, unit
testing, mutation testing etc. However, in spite of all these
steps preventable errors still occur. Many of these errors can
be detected before they get deployed if formal verification is
adopted into the production pipeline [1]. However, adoption
of verification techniques is typically done in a theory-first
direction. Where a base theory is developed into a theoretical
tool, called a model checking tool, that software engineers are
forced to use and adhear to. Whilst many of the tools are
free to use and open source, this direction of adoption can be
harmful to the efficiency of the pipeline. Engineers have to
learn even more standards on top of the ones they already
know, opening the possibility of errors in the verification
integration. This direction of adoption is not by choice. If
a company wishes to integrate verification into their software
production pipeline they have to either; tediously model their
system in the chosen modeling language and hope they did
not make any mistakes (Model Driven Development) or they
would have to restructure their entire pipeline and existing
toolchain to originate from a modeling language that might not
even be expressive enough for their purposes (Model Based

Development). These factors have attributed to the minimal
adoption of verification in industry, even if the engineers of
the system already know about the potential benefits it can
bring.

Some of the only successful applications of formal verification
techniques in the production of industrial software is either
in avionics [2] where safety is extremely important or in
large companies that can have internal support in building the
needed infrastructure [3, 4].

The goal of this project is to go in the opposite direction. Using
an existing real world system, derive a theory that describes the
behaviour and supports verification. We will be focusing on
a specific case from petrol tanker truck manufacturer HMK
Bilcon, that is already using a Model Based Development
pipeline to produce embedded software for their trucks, with
a domain specific modeling language.

The rest of the paper is structured as follows: In Section II we
go over the differences between Model Driven Development
and Model Based Development and argue which one is more
suitable for integration of verification. In Section III we survey
the various model checking tools available for industrial usage.
In Section IV we go into detail about the HMK Bilcon case
and in Section V we compare their domain specific modelling
language with traditional modelling languages. Section VI and
Section VII goes into detail about what a Tick Tock Automata
is and how it models the system from the use case. We then
provide some techniques to avoid state space explosion when
verifying in Section VIII. Then in Section IX and Section X
we discuss possible implementations of the theory and draw
conclusions on our findings.

II. MODEL BASED DEVELOPMENT VS MODEL DRIVEN

DEVELOPMENT

Although they initially sound incredibly similar, there is a very
crucial difference between Model Based Development (MBD)
and Model Driven Development (MDD). These development

1



methods are two different ways of integrating a formal way
of specifying system features into software development.

Code

�Iteration

Model

�Iteration

Conforms?

Figure 1. Model Driven Development diagram

Figure 1 illustrates how an MDD pipeline typically works.
Developers iterate on the system via the code i.e. traditional
development where you write code and add new components
etc. Then once a feature is developed, a domain expert has to
update the Model of how the feature is expected to behave.
Typically the order in which these iterations are done does
not matter and both tasks can be done by seperate people in
parallel. Then when both the model and the code is updated,
you would use a Model Driven Testing (MDT) approach to
ensure that the expected behaviour and actual behaviour agree.

CodeModel

�Iteration

Generates

Figure 2. Model Based Development

Figure 2 illustrates how an MBD pipeline would typically
work. Here iteration only happens on the model. This is
because the model is the system. Once a system feature is
requested, either a domain expert or a developer then models
that feature, presses a button, and then the modelling software
generates the code or executable that adhears to that behaviour.
The main issues with MBD are that developers now have to be
domain experts and domain experts have to be developers. This
makes it difficult for companies to adopt an MBD pipeline,
unless it is done from the very beginning of the project.
There is also put a lot of trust into the modelling software
itself, which may have fundamental flaws and may generate
incomplete, broken or even worse, wrong code. Whereas a
MDD based pipeline can be very easy to integrate into an
already existing development pipeline. All you need is a
domain expert to model the system features. However, because
of the double iteration, there is a lot of manual maintenance

associated with MDD. You might not even be able to hit every
single edge case when doing testing of the model and code.

In terms of integrating formal verification into a pipeline, we
argue that it is most beneficial in the long run to adopt a
Model Based Development pipeline. The verification step can
be performed during code generation, or if the verification
takes a long time, at selective times. If the code generation
is sound and complete according to the modelling formalism
used, then the guarantees offered by the verification would
also hold for the actual code generated.

III. MODELLING AND VERIFICATION TOOL SURVEY

In the world of model checkers, a lot of different tools have
been developed. Many of them have been used in industrial
cases but most tend to be born from academic interests. This
chapter will illuminate a set of model checking tools, that is
at the time of writing either available for licensing, purchase
or free. For the sake of brevity, we have also chosen to omit
abandoned projects or projects that are not released yet.

A. UPPAAL

The UPPAAL toolbox is a model checker based on the
Network of Timed Automata formalism [5]. The tool is
developed through a joint effort from Uppsala University in
Sweden and Aalborg University in Denmark, hence the name
UPPAAL. The tool has been used in many industrial cases.
From audio protocols to verifying the correctness of gearbox
controllers [6]. UPPAAL can only be used commercially with
a proprietary license, which is a common criticism of the
otherwise very successful tool. The UPPAAL name has a
lot of different spinoff model checkers. Some of which has
discontinued development, but some are still relevant and
are receiving updates. We have listed the ones that are most
relevant to the HMK Bilcon case study.

1) TIGA: UPPAAL Timed Games, is a version that uses
timed game automata to solve reachability and safety prop-
erties. This version can be useful in systems with user inter-
action, or non-predictable hardware sensors.

2) CORA: Uppaal CORA (Cost Optimal Reachability
Analysis) is a version, that uses an extension of timed au-
tomata called Linearly Priced Timed Automata (LPTA) which
allows the designer to annotate costs to the model. This cost
specification can be useful when finding the most efficient path
through some problem.

3) PORT: Uppaal PORT is designed with a focus on
verifying embedded and real-time systems. It is integrated

2



with the Eclipse plugin, SAVE IDE (Integrated Development
Environment). Modelling in this tool is done via a component-
based version of Timed Automata, where system setup is
specified in an Architecture Modelling Language.

4) SMC: Uppaal SMC (Statistical Model Checking) uses
many randomly independent traces of the model to statistically
develop a confidence level of certain properties. This approach
makes the tool very fast compared to the other tools,
however the statistical approach can technically miss some
very crucial edge cases. Uppaal SMC is integrated into the
main distribution of the Uppaal toolbox.

B. ECDAR

The ECDAR (Environment for Compositional Design and
Analysis of Real time Systems) tool is an open-source effort to
provide an automata theory based backend, similar to Uppaal.
By using an extended formalism called Timed Input/Output
Automata and with an extended theory to accomodate it [7].
The toolchain has its own Graphical User Interface (GUI1),
that enables composition of automata in a parallel manner,
which enables design of small individual components that
focus on solving a single task. There are, at the time of
writing, three versions of the Ecdar toolchain: Ecdar 0.11 that
is implemented in C++ but uses closed source components,
Ecdar 2.2 which is licensed under the GPL3 license and is
mostly just an alternative GUI for Ecdar 0.11, and Jecdar
which is a limited backend reimplementation done in Java as
the name suggests.

C. H-UPPAAL

(Hierarchical Uppaal) Is an open source GUI that can draw
automata in a hierarchical manner. It is designed to use the
UPPAAL backend to verify flattened versions of its models,
but it does not offer any verification by itself and it cannot
generate executable code either.

D. TAPAAL

TAPAAL is a Free and Open Source (FOSS) model checking
toolbox, focusing on the Timed Arc Petrinet formalism[8].
Developed at Aalborg Univesity, the tool supports two
variations of verification engines, one that uses continuous
time licensed under the GPL v2 license [9], and one using
discrete time steps with the BSD2 License [10]. Each of these
backends have their individual strengths and weaknesses in
terms of speed and performance. TAPAAL does not support

1Also sometimes called a front-end.

automatic code generation, but tools like stverif [11] goes
the other way, targeting TAPAAL as a verification engine
for verifying already written PLC (Programmable Logic
Controller) programs written in the structured text language.

E. SPIN

Developed by Bell Labs in the early 80s, Spin (Simple
Promela Interpreter) is focused on concurrent and distributed
system verification, and is one of the most popular model
checking tools. It has been used for verification of every-
thing from phone calling systems [12] to space exploration
probe Cassini’s handoff algorithms [13]. The tool uses a tex-
tual modelling language called PROMELA (PROcess MEta
LAnguage), which is used to describe the models to be veri-
fied. Queries are expressed in Linear Temporal Logic (LTL),
enabling developers to ask questions about linear properties
of their programs. Perhaps as a result of being so old, Spin is
available directly in the stable release of Debian Linux and
Ubuntu, and fits very well together with other much used
programs such as gcc and yacc. This makes it a lot easier
for companies to integrate Spin into their already existing
pipelines.

F. Other Modelling Tools

A lot of industry born modelling tools have the ability to
generate code. Such functionality enables more direct control
of how the system should function, and can provide a more
practical perspective on how to design models.

1) IBM Rational Rhapsody: Originally implemented by i-
Logix in 1997 [14], Rational Rhapsody offers a modelling
formalism called State Charts and supports automatic code
generation through the STATEMATE tool [15]. The newer
IBM versions support testing profiles being specified via a
UML formalism, so developers can perform Model Based
Testing (MBT) on their systems. However, no automatic
formal model verification is supported in Rational Rhapsody.

2) Sparx Enterprise Architect: Owned and developed by
Sparx Systems, this tool offers a UML based development
and code generation from such models [16]. Developers
using this tool are able to automatically generate test cases
based on high level concepts such as Use Case models,
ensuring proper compatibility with the feature requirements.
The tool also provides strong documentation utilities, such that
feature-implementation-reports will mostly write themselves.
However, there are no utilities for formally verifying your
models.

3



3) IAR Visual State: Owned by IAR Systems, IAR Visual
State is a modelling tool using a formalism based on
David Harel’s theory of State Charts [17], it can synthesize
executable C code that can be programmed onto an embedded
chip. The tool is utilizing a hierarchical modelling syntax [18]
and has a built-in verification engine, that can detect potential
problems such as two transitions editing the same variable at
the same time, effectively producing a race condition. The tool
is using a Binary Descision Diagram (BDD) based approach
for reachability analysis of such race condition states and if
such a state is reachable, the model is considered invalid and
the tool spits out an error and a trace for the system designer
to handle. Like a traditional Model Checker tool.

G. Tool Summary

Table I gives an overview of the presented tools. There are no
tools that offer a free license, code generation and verification
features at the same time. The IAR Visual State toolbox is
the tool that comes closest to that description, but the fact
that the license is restrictive can prohibit small and upcoming
companies to adopt a model based development pipeline. The
H-Uppaal tool does not natively provide code generation or
verification, because it is really just meant to be a GUI for
drawing models that can pass those models on to underlying
engines.

Tool License(s) Formalism CodeGen Verification
Uppaal Proprietary

/ Free for
Academics

Net of Timed
Automata

No Yes

Tapaal GPLv2 /
BSD2

Timed Arc
Petrinets

No Yes

SPIN BSD3 PROMELA No Yes
Ecdar MIT Input/Output

Automata
No Yes

H-Uppaal MIT Input/Output
Automata

No No

IBM RR Proprietary State Charts Yes No
Sparx EA Proprietary UML Yes No
IAR VS Proprietary State Charts Yes Yes

Table I
TOOLS OVERVIEW

If a company such as HMK Bilcon would want to use a
Model Based Development pipeline, they would have to rely
on products such as IAR Visual State for tool support. This
would limit them to a specific formalism and code output
format. These restrictions also mean that if any errors or
obvious optimizations was found in the tool itself, they would
have to wait for IAR Systems to patch it, even if the fix was
relatively easy to do. Because of this, we argue that a custom
solution extending and/or combining the freely licensed tools
would be ideal and incidentally this is excactly what HMK

Bilcon has done.

IV. CASE WITH HMK BILCON A/S

HMK Bilcon is a Danish industrial truck producer that
assembles custom petrol tanker trucks. The trucks can be
customized to the individual buyer’s desires as much as
possible, so they treat each truck order as an individual project
instead of a mass production product. Most of these trucks
need a system that automates the sequences of actions needed
to perform a product delivery (typically petrol, but also other
types of wet products), and this is where HMK Bilcon have
developed the SafeCon line of systems. These systems help
the truck driver control his trucks’ piping systems and various
lights from a number of panels.

The newest SafeCon version, SafeCon III, is the system of
interest for this project. In Figure 4 the physical architecture of
the system is shown. SafeCon III is a flexible system operated
by a traditional x86_64 industrial-use rated control computer,
dictating what the system should do, and the physical input
and output ports are controlled by a set of custom PCB prints
(IO Boards). These boards are communicated to and from via
a specialized router that acts as a bridge between the serial
connection and the Wired Local Area Network (WLAN). The
router also provides an Internet connection, enabling Over The
Air (OTA) updates and remote truck support if the truck driver
calls in for assistance.

Control Computer

Router
OInternet

I/O CardI/O Card I/O Card I/O Card

wired LAN

serial bus

I I I OO I I I OOI I I OO I I I OO

Figure 4. SafeCon III system physical setup

The logic executed on the control computer is dictated by a
state machine model, written in a custom modelling language
reminiscent of Networks of Timed Automata theory. Then
state machine code is generated from these models, which
is in turn executed on the control computer. This pipeline is
clearly an MBD pipeline and is therefore ripe for exploiting

4



Figure 3. SafeCon III Installed on a truck. Highlighted on the left photo is the touch interface attached to the truck. The control computer is behind the
screen. The photo on the middle is the custom PCB I/O Boards and the right-most photo is of the tablet interface located inside the driver’s cabin. Photos
provided by HMK Bilcon

the benefits that verification techniques can bring. Figure 5 is
a more detailed diagram of this MBD pipeline.

H-Uppaal

json files

Java
Statemachine class

Runtime
Execution

gson Translator & Compiler

Error
Reporting

Figure 5. SafeCon III Model Based development pipeline, from model
drawing to executable code - Figure provided by HMK Bilcon

At first, an engineer defines the desired logic of the system in
the H-Uppaal tool. Once a feature has been modelled, a custom
compilation backend makes sure that there are no obvious
errors in the expressions. The backend also makes sure to
reject some of the features that H-Uppaal supports, but the
SafeCon system does not, such as Invariants. If any errors are
found by the compiler, it reports it to the engineer via the
error window in H-Uppaal, so that he may fix it. If no errors
are found, the state machine is considered valid and can be
executed on the SafeCon III hardware. The H-Uppaal tool was
selected because of its user friendly interface and association
with verification theory, providing a platform for verification
integration.

V. HARDWARE ABSTRACTION WITH KNOWLEDGE

The logic used is internally called by the acronym HAWK
(Hardware Abstraction With Knowledge) and as the name
suggests, it was originally intended as a convenient abstraction
for modeling behaviour of hardware, whilst containing some
idea of the current and past state of the system. The logic
that they ended up with have some key deviations from
established theories such as Networks of Timed Automata:

• Variables are globally accessible
• Variables are used instead of channels for inter-process

communications
• Unknown variables (Input ports change on a whim)
• Variable value domains are finite
• Custom domain specific runtime semantics

These deviations are essentially a biproduct of the way
the language was designed. The use of variables instead
of channels was primarily born from a production speed
perspective, where variables were implemented first and then
exploited to do other things. When the notion of implementing
channels came to light, the most financially viable choice was
to just keep using variables instead.
The fact that the system has some variables which will
always be unknown is really just a consequence of the real
world execution requirement for the language. Input ports and
sensory data are just completely out of the software engineers’
hands to determine before the system is running. However,
a nice feature born from this execution-need is the fact that
variable value domains simply cannot be infinite. 64bit integers
have large domains, yes, but it is not infinite and SafeCon III
mostly uses 8bit integers for input values and booleans for
internal variables.

5



Figure 6. Example of a state machine component in HAWK

HAWK clearly has a big focus on manipulating variables.
This focus is primarily born from an engineering standpoint,
since the logic should be able to actually run whilst still
being legible, understandable, easy to use, fast and efficient
to produce new features in. HMK Bilcon does not wish to
adopt a new formalism, since that would mean they have to
throw out their existing code base and feature-set, just for a
more mathematically sound formalism. It is just not financially
viable. Therefore, we will in the rest of this paper focus on
formulating what HMK Bilcon already have produced in a
mathematical manner, such that verification techniques can be
eventually integrated into the MBD production pipeline.

VI. MATHEMATICAL PRELIMINARIES

B is the boolean value domain with the values tt (true) and
ff (false).

B = {tt ,ff } (1)

We define the union of the boolean value domain and real
numbers to be the variable-value domain. We do not include
the set of natural numbers, since it is already included in the
set of real numbers.

V = B ∪ R (2)

We define function mutation by element replacement of some
function f : C → D with some other function g : C → D as
a function h : ((C → D)× (C → D)× 2C)→ (C → D):

h = f [f(x)/g(x)] for ∀x ∈ C ′, where C ′ ⊆ C

=

h(f,g,C′)(x)=


g(x) if x ∈ C ′,
f(x) else

(3)

We then say that the set C ′ of such a mutation is the element
influence of function h. The element influence can also be
written as:

Infl(h) = C ′ (4)

For brevity, we sometimes write h(f, g, C ′) as hC′(f, g). We
call functions that modify other functions in this manner
function modifier functions or FMFs for short. The set of all
FMFs is F with h ∈ F. We also define the ⊕ relation as a
composition of FMFs. We creatively call this relation the FMF
composition relation, and it has the type ⊕ : F×F→ F and
is defined as follows:

If we have two FMFs fA, fB modifying the f function with
functions f ′andf ′′ respectively:

fA(f, f ′) = f [f(x)/f ′(x)] for ∀x ∈ A
fB(f, f ′′) = f [f(x)/f ′′(x)] for ∀x ∈ B

(5)

If A ∩ B = ∅ then we have that the composition of fA, fB
is2:

⊕ (fA, fB)(f) = f [f(a)/f ′(a), f(b)/f ′′(b)] for

∀a ∈ A and ∀b ∈ B (6)

The FMF composition can also be written as fA ⊕ fB . Given
a set F = {f1, f2, . . . , fk}, we also say that ⊕F

f∈F f is the
same as f1 ⊕ f2 ⊕ · · · ⊕ fk. The element influence of such
a composed function would be Infl(f1 ⊕ f2 ⊕ · · · ⊕ fk) =

Infl(f1) ∪ Infl(f2) ∪ · · · ∪ Infl(fk).

To avoid confusion later on, we also define the function
composition operator for sets of functions. The composition
(◦) of function f and g is defined as:

(f ◦ g)(x) = f(g(x)) (7)

If we then say that the set containing functions f and g is
Tfg = {f, g}, we then say that:

f(g(x)) = (©Tfg

r∈Tfg
r)(x) (8)

Note that the law of transitivity does not necessarily apply for
the function composition operator. It depends on the functions
f and g themselves.

VII. TICK TOCK AUTOMATA

In this section we will introduce the notion of a new
type of automata, called a Tick Tock Automata, that has a
primary focus on being as close to the SafeCon III systems
functionality as possible. Figure 7 illustrates the ticking and
tocking, that the system does. A tick represents the time-frame
of which the logical part of the system operates, then some
output to the world is set. During the tock time-frame, the
system reads input values from all the sensors and informs

2If A ∩B 6= ∅, then ⊕(fA, fB) is undefined

6



the system of what changes has occoured and then another
tick can happen, making the system run in tick-tock cycles.

Logic

Update Output Values

Read HW Input Values

Tick
Tock

Start

Figure 7. Tick Tock intuition flow chart

In a more theoretical sense, this means that the statemachine is
only allowed to update its state by following transitions during
a Tick cycle. As is evident from Definition 1.1, this formalism
is heavily tied to unknowable external inputs.

Definition 1.1. Tick Tock Automata (TTA)
A Tick Tock Automata A is a tuple: A =

(L, l0, C, V,E,Ω, v0, c0) where:

• L is a set of locations,
• l0 ∈ L is the initial location,
• C is a set of clocks, and RC is the set of all clock

valuations,
• V is a set of internal variables,
• E is a set of edges of the form E = L×G×U×2C×L,
• Ω is a set of external variables,
• v0 ∈ Λ is the initial variable valuation, and
• c0 is the initial clock valuation, where c0(x) = 0. ∀x ∈ C

The set Ω is a set of variables, that represent the physical
sensors and actuators that a TTA is attached to. The Ω set can
be split into two mutually disjoint sets: Ωo for external output
variables and ΩI for external input variables. Additionally,
we define the set of all variables as Z = Ω ∪ V . With the set
of all variables, we can also define what is called the Tick-
writeable variables set as ZO = Z \ΩI . This set will come in
handy later. Edges e ∈ E are defined as vectors of elements:
e = 〈l, g, u, r, l′〉, where:

• l ∈ L is a start location,
• g ∈ G is a guard,
• u ∈ U is an update function,
• r ⊆ C is a set of clocks to be reset, and
• l′ ∈ L is an end location

We also write l
g,u,r−−−→ l′ if ∃e ∈ E such that e = 〈l, g, u, r, l′〉.

If the edge has no guard (g = ε), update (u = ε) or clock
reset-set (r = ∅), we simply ommit them from the notation.
e.g. l u−→ l′ means that ∃e ∈ E such that e = 〈l, ε, u, ∅, l′〉.

Let Λ be the set of all possible variable valuations s.t. v ∈ Λ

is of the form
v : Z → V

A clock valuation c ∈ RC function is defined as:

c : C → R≥0

A guard g ∈ G is defined as a function, that maps a variable
or clock valuation to either a true-value or a false-value.

g : Λ ∪ RC → B

An update u ∈ U is defined as a function

u : Λ→ Λ

Additionally, we define the type function τ , that maps variables
to domain sets:

τ : Z → 2V

We abuse the notation r(c) → c′ to mean c′ =

c[c(x)/c′′(x)]. ∀x ∈ r s.t. c′′(x) = 0. If for some edge
e = 〈l, g, u, r, l〉, there is no clocks to reset r = ∅, then we
say that r(c) = c for any c ∈ RC .

�

TTAs also have a graphical notation that is almost identical to
Timed Automata. Locations are represented with circles and
edges are represented with arrows going from one location
to another. Edges are annotated with the guards, updates and
clock reset-sets and the initial location is simply indicated by
an arrow pointing to it.

A requirement set by HMK Bilcon is that the statemachine
should be able to take multiple transitions before a hardware
input read cycle is started. This is primarily due to ease of
development, but it also allows them to do some clever logic
as illustrated in Figure 8. In this figure we have a statemachine
that starts in location l1, and has three different guards: g1, g2

and g3.
This logic is similar to fall-through in traditional C-style
switch cases, such that the updates u1, u2, and u3 will
always be executed in immediate sequence of eachother and
the guards select at which place in the update sequence the
execution should start. This update sequence is required to be
completed before any external input values are read.

7



l1 l2 l3

l4 l5

l6 l7

g1 u1

u2

u3

g2

g3

Figure 8. Multiple transitions should be possible in selective parts of the
logic

Definition 1.2. TTA Semantics

Let A = (L, l0, C, V,E,Ω, v0, c0) be a TTA. The semantics
is defined as a Transition system 〈S, s0,→〉, where S =

L × Λ × C is the set of states, s0 = (l0, v0, c0) is the initial
state, and →⊆ S × S is the transition relation defined by:

A Tick-transition (l, v, c)→ (l′, v′, c′) is valid iff.

• l
g,u,r−−−→ l′ such that:

• g(v) = tt and
• g(c) = tt and
• u(v) = v′ and
• r(c)→ c′

A transition is said to be enabled if there exists an edge from
l to l′, where the guard is satisfied within the v variable
valuation function and clock valuation function c, and that
the associated update function u results in the new v′ variable
valuation function.

A Tock-transition is a two step process, where we first “read”
the input values from hardware. This is described with the Γ

function. Defined as a function Γ : Λ→ Λ, where:

Γ(v) = v[v(x)/v′(x)]. ∀x ∈ ΩI s.t. v′(x) ∈ τ(x) (9)

This function replaces all values associated with the external
input variables, in a type-safe manner. The selection of the
replacement function v′ is non-deterministic. This is analogous
with a completely unknown external evironment.
As the second step of a Tock-transition, we define the clock-
delay step as the γ function:

γ(x) = for some d ≥ 0, c[c(x)/c′(x)].

∀x ∈ C s.t. c′(x) = c(x) + d (10)

Essentially, all we do here is delay all clocks by some non-
deterministicly selected value d ≥ 0. This is analogous to
the fact that reading hardware values is not an instantanious
process, and can even take forever (timeouts).
We can now define the Tock-transition as two sequential
statements:

v = Γ(v) ; c = γ(c) (11)

For the TTA semantic to support the behaviour described
in Figure 8 we will introduce the notion of Immediacy.
Note that Immediacy is different from Timed Automata’s
(TA) Urgency, which refers to time progression and not tock
actionability. However, immediacy somewhat resembles the
notion of Committedness, but we choose to make the explicit
distinction, because of the fundamental differences TTAs have
compared to traditional Timed Automata (TA). We say that
a location l is annotated as immediate if it is in the set of
immediate locations I ∈ L. If the current state s = (l, v, t) is
in an immediate location l ∈ I , then we will take another Tick
action instead of a Tock action. To make the update sequence
described in Figure 8 happen before any Tock actions are
taken, we simply annotate the locations l2, l3, l4, l5 and l6

as immediate. In Figure 9, these annotations are illustrated as
squares.

l1 l2 l3

l4 l5

l6 l7

g1 u1

u2

u3

g2

g3

Figure 9. Immediacy enables fine grain execution noodle control

The full Tick-Tock behaviour with immediancy is illustrated
in Figure 10 as a flow chart. Note that a Tick-step transition
cannot perform a time delay, but it is possible in a Tock-step
to delay forever (discretely).

Tick

is s = 〈l, v, c〉 s.t. l ∈ I

Tock
No

Start

Yes

Figure 10. Tick Tock flow chart

We say that a TTA A is Tock-independent if all reachable
locations in a given TTA A are marked as immediate l ∈ I .
Such a TTA will never be able to execute a Tock-transition.

�

With a Tick Tock Automata and it’s semantics defined, we can
define a network of parallelly composed TTAs.

Definition 1.3. Network of Tick Tock Automata (NTTA)
Let Ai = (Li, l

i
0, C, V,Ei,Ω, v0, c0) be a network of n Tick

Tock Automata. Let l̄0 = 〈l00, l10, . . . , ln0 〉 be the initial location

8



vector. The semantics of an NTTA is defined as a transition
system 〈S, s0,→〉, where S = (L0×· · ·×Ln)×Λ×C is the
set of states, s0 = 〈l̄0, v0, c0〉 is the initial state and→⊆ S×S
is the transition relation defined by:

A Tick-transition (l̄, v, c)→ (l̄′, v′, c′) is valid iff:

1) Either l̄ 6= l̄′ or v 6= v′ or c 6= c′, and

2) for all ∀l′ ∈ l̄′, we have that

a) If ∃e = 〈l, g, u, r, l′〉 ∈ Ei for any 0 ≤ i ≤ n where
l ∈ l̄ and

b) g(v) = g(c) = tt

c) Then for any 0 ≤ j ≤ n, @e′ = 〈p, g′, u′, r′, p′〉 ∈ Ej

s.t. p ∈ l̄, p′ ∈ l̄′ and e′ 6= e, where:

i) g′(v) = g′(c) = tt , and

ii) Infl(u) ∩ Infl(u′) 6= ∅

d) Else, l′ also has to be an element in l′ ∈ l̄.

3) v′ = (⊕Tu(l̄,l̄′)

u∈Tu(l̄,l̄′)
u)(v), where:

a) Tu(l̄, l̄′) = { u | ∀l′ ∈ l̄′ s.t. ∃e = 〈l, g, u, r, l′〉 ∈
Ei for any 0 ≤ i ≤ n, where l ∈ l̄ and g(v) = g(c) =

tt} is the set of taken transition updates

4) c′ = (©Tr(l̄,l̄′)

r∈Tr(l̄,l̄′)
r)(c), where:

a) Tr(l̄, l̄′) = { r | ∀l′ ∈ l̄′ s.t. ∃e = 〈l, g, u, r, l′〉 ∈
Ei for any 0 ≤ i ≤ n, where l ∈ l̄ and g(v) = g(c) =

tt} is the set of taken transition clock reset-sets

For a given location vector e.g. l̄ = 〈l1, l2, l3〉, we say that
the location l2 is an element in the vector written as l2 ∈ l̄.
Since networked TTAs share all variables, internal as well as
external, a Tock-transition of an NTTA is identical to having
just a single TTA. However, the condition for immediacy to re-
issue a Tick-transition has to be slightly modified. In Figure 11
we show the updated immediacy condition.

Tick

is s = 〈l̄, v, c〉 where ∃p ∈ l̄ s.t. p ∈ I

Tock
No

Start

Yes

Figure 11. Tick Tock flow chart for network of Tick Tock Automata

This means that, as long as a single TTA in the network is
in an immediate location, no Tock-transition can be taken. If
the network never allows a Tock-transition, we call it Tock-
independent.

�

The strict rules for when a transition is valid or not, avoid some
of the nasty situations encountered when modelling concurrent
systems that share variables. Consider the scenarios illustrated
in Figure 12, Figure 13, Figure 14 and Figure 15.

v0(a) = 0

v0(b) = 0

l̄0 = 〈l1, l3〉
C = ∅
G = ∅

l1

A

l2

l3

B

l4

uA : a := b

uB : b := 7

Figure 12. Network of two TTAs A and B, posing a potential variable
updating issue

The case of Figure 12 shows the potential race condition. If
we take the transition 〈〈l1, l3〉, v0, c0〉 → 〈〈l2, l4〉, v′, c′〉, what
value does v′(a) evaluate to?

Given a network of Tick Tock Automata, such as the one
described in Figure 12, the transition from the initial location
vector 〈l1, l3〉 to 〈l2, l4〉 results in a variable valuation v′,
where v′(a) = 0 because rule 3 is defined by the FMF
composition of the updates on the edges l1

uA−−→ l2 and
l3

uB−−→ l4, where

uA(v) = v[v(a)/v′′(a)] where v′′(a) = v(b) and

uB(v) = v[v(b)/v′′′(b)] where v′′′(b) = 7.

In other words: v′ is defined as uA ⊕ uB(v0) = v′, which is
equal to:

uA ⊕ uB(v0) = v0[v0(a)/v′′(a), v(b)/v′′′(b)]

where v′′(a) = v0(b) and v′′′(b) = 7 (12)

And since v0(b) = 0 and v′′(a) = v0(b) then v′′(a) must
be v′′(a) = 0, which results in v′(a) = 0. Even though
v′(b) = v′′′(b) = 7.

The intuition behind this behaviour is that all variable
assignments are atomic, and all right-hand-side expressions
are evaluated before any variables are assigned.

The example illustrated in Figure 13 shows why it is very
important to have such strict Tick-transition validity rules as
we do. If we take the transition from 〈〈l1, l3〉, v0, c0〉 →
〈〈l2, l3〉, v′, c′〉, what value does v′(a) evaluate to?

9



v0(a) = 0

l̄0 = 〈l1, l3〉
C = ∅
G = ∅

l1

A

l2

l3

B

uB : a := 2

uA : a := 1

Figure 13. Network of two TTAs A and B, potentially giving a race condition

In the transition 〈〈l1, l3〉, v0, c0〉 → 〈〈l2, l3〉, v′, c′〉, there
exists an edge e = 〈l1, ε, uA, ∅, l2〉, but there also exists
another edge e′ = 〈l3, ε, uB , ∅, l3〉, where the influence of the
update functions uA and uB clash, i.e. Infl(uA)∩Infl(uB) =

{a} 6= ∅. Therefore, since we have a violation of the 2.c.ii rule
there is no valid transition from the location vector 〈l1, l3〉 to
〈l2, l3〉. However, there is a transition from 〈〈l1, l3〉, v0, c0〉 →
〈〈l1, l3〉, v′, c′〉, where v′(a) = 2. In fact, there are no valid
Tick-transitions from the initial state that ends up in a state
with location l2 in their location vector.

v0(a) = 0

l̄0 = 〈l1, l2〉
C = ∅
G = {gB}

l1

A

uA : a := a+ 1

l2

B

l3
gB : a = 1

Figure 14. Seemingly a Tick-deadlock, however there does exist a chain of
transitions that can get B to l3.

Figure 14 illusrates an example of how a TTA can be
dependent on other TTAs in a network. In isolation, the TTA
B will never be able to enter l3, because of the guard gB . But
if A fires it’s transition, updating the a variable to evaluate to
1, then B can proceed to l3. Or more formally:3

〈〈l1, l2〉, v0, c0〉 → v0(a) = 0

〈〈l1, l2〉, v′, c′〉 → v′(a) = 1

〈〈l1, l3〉, v′′, c′′〉 v′′(a) = 2

For situations where there is a choice between two edges, the
resulting transition system simply branches into nondetermin-
istic choice. Figure 15 shows a network containing a single
automata, that produces such a transition system.

3Note that c0 = c′ = c′′, so we do not really care about it in this example

v0(a) = 0

l̄0 = 〈l1〉
C = ∅
G = ∅

l1

A

l2

u1 : a := 1

u2 : a := 2

Figure 15. Network of Tick Tock Automata with only one automata, showing
nondeterministic choice of two edges, both manipulating the evaluation of
variable a.

taking u1 〈〈l1〉, v0, c0〉 → v0(a) = 0

〈〈l2〉, v′, c′〉 v′(a) = 1

taking u2 〈〈l1〉, v0, c0〉 → v0(a) = 0

〈〈l2〉, v′′, c′〉 v′′(a) = 2

Nondeterministic behaviour may become an issue in real-
world applications such as the SafeCon III system. However,
they are not necessarily a critical issue. Once a nondeterminis-
tic choice is encountered, the system could note it as a warning
and then simply pick one. If a critically wrong path is chosen,
the developer will have that warning as a guide.

v0(a) = 0

l̄0 = 〈l1, l3〉
C = {c1}
G =

{g1, g2}

l1

A

l2

g1 : c1 ≥ 7

u1 : a := a+1

r1 : {c1}

l3

B

l4
g2 : a = 2

Figure 16. Network of TTAs that require at least one Tock-transition to
proceed past l̄0

Figure 16 shows an example TTA network that uses both
immediacy (l2 ∈ I) and clocks (c1). The network consists
of a TTA (A) that increments variable a by one for every
seven seconds that has passed, and another TTA (B) that has
the opportunity to go from l3 to l4 when variable a is excactly
two. To ensure that the incrementation of a is immediate, l2
is marked as an immediate location. Intuitively this network
looks like it can go down two different paths: One where the
B TTA passes up on the opportunity to go into l4, and one
where it takes it. All whilst the A TTA counts variable a up
towards infinity.
In Figure 17 the reachable state space of Figure 16 is presented
as a single transition system, that is also containing Tock-
transitions. Each state is represented as a location vector, a
constraint for the valuation of variable a, and a constraint

10



of the clock valuation of clock c1. This way of representing
the states is somewhat inspired by the zones concept used in
the Uppaal verification engine [19]. The transitions marked
green are the ones that can produce an infinite sequence of
steps, where the l4 location is within the location vector,
and the transitions marked red are those that can produce
an infinite sequence of steps, where l4 is not in the location
vector. This means that if we were to ask the query: “Will we
always eventually reach l4?”, the answer would be no. But,
interestingly the SafeCon III system has a specific condition
for issuing a Tock-transition that we have not integrated into
the semantics yet. The SafeCon III system guarantees that the
system will get at least ten chances to take a Tick-transition
before another Tock-transition can be taken. As marked by the
light blue box, this extra condition will result in a drastically
reduced state-space and makes the answer to the previous
query a yes. Wether or not this is a desired property of the
system is a decision for the engineer designing the system to
make. Adding this condition can be done fairly easily, by just
adding it to the conditions of taking a Tock as can be seen in
Figure 18.

Tick

is n > 10?

is s = 〈l̄, v, c〉 where ∃p ∈ l̄ s.t. p ∈ I

Tock

Yes

No

n = 0
n = n+1

No

Yes

Figure 18. Tick Tock flow chart for network of Tick Tock Automata updated
for SafeCon III conformance

The minimum amount of Tick-transition opportunities can be
changed in accordance with whatever specific properties the
system should have. For getting the desired state space in the
light blue box in Figure 17, we only need to compare n > 2.

VIII. AVOIDING STATESPACE EXPLOSION

The definition of Tock-transitions is very open ended and
can lead to some very difficult situations when verification
is attempted. The fact that all input variables can change from

〈l1, l3〉
a < 2

7 > c1 ≥ 0

Tock
〈l1, l3〉
a < 2

c1 ≥ 7

〈l2, l3〉
a < 2

c1 ≥ 7

〈l1, l3〉
a = 2

7 > c1 ≥ 0

〈l1, l3〉
a = 2

7 > c1 ≥ 0

Tock

〈l1, l3〉
a = 2

c1 ≥ 7

〈l1, l4〉
a ≥ 2

7 > c1 ≥ 0

Tock
〈l1, l4〉
a ≥ 2

c1 ≥ 7

〈l1, l4〉
a ≥ 2

c1 ≥ 7

Tock

〈l1, l4〉
a ≥ 2

c1 ≥ 7

〈l2, l4〉
a ≥ 2

c1 ≥ 7

〈l2, l3〉
a ≥ 2

c1 ≥ 7

〈l1, l3〉
a ≥ 2

7 > c1 ≥ 0

Tock

〈l1, l3〉
a ≥ 2

c1 ≥ 7

Figure 17. Reachable state space for the NTTA described in Figure 16. States with an immediate location in them are annotated by a rectangle with sharp
corners (non-rounded corners).

11



one Tock to another is not only unrealistic, but also explodes
the reachable state space exponentially. As an example
consider a simple TTA with just a single location l1, l0 = l1

with a single looping edge E = {〈l1, ε, ε, l1〉}, and the set of
external input variables ΩI = {i1, · · · , ik}. Let us assume that
all external input variables are boolean typed, then the amount
of reachable states would explode to 2k. If we say that the
system has fifty external input variables (k = 50), which is
not an unimanginable scenario, the state space would grow into
roughly 1.1× 1015 different states. All reachable via a single
Tock-transition. For the sake of effective reachability analysis,
this explosion behaviour will obviously have to be mitigated
or avoided as much as possible. Clocks can also make the
state space explode exponentially, but by representing states
as zones as described in [19] and shown in Figure 17, clock-
induced statespace explosion can be effectively minimized.
In this section we will focus on variable-induced statespace
explosion mitigation. We are taking a two step approach to
reducing this problem; Restricting the definition of the Tock-
transition itself and providing the system designer with a way
of manually defining domain-guarantees for the external input
variables.

A. Interesting-ness

In order to reduce statespace explosion, we introduce the set
of interesting external input variables (written as ΠI ). An
interesting external input variable is one that might be used in
the next series of Tick-transitions after a Tock has occoured.
Since a Tick-transition is unable to override the external input
variables, we are only interested in looking at the guards of
the edges when searching for ΠI . Therefore we introduce the
testing function T , which maps edges to a set of variables:

T : E → 2Z (13)

As an example, consider the guard g = a < 3 and update
u = x = a on edge e, respectively testing if the variable a is
lower than three and setting variable x to the value of a. We
then define T (e) = {a, x}. If we want to know if an edge e
is testing an external input variable, we can simply mask the
internal variables and external output variables T (e) \ (V ∪
ΩO) ⊆ ΩI . Algorithm 1 shows an algorithm for finding the
set of interesting variables given a location and the set of edges
in the associated TTA. Note that this is essentially a recursive
tree search, where we are recursing if an immediate location
is potentially reachable from the given location vector. For
networks of TTAs, InterestingVarSearch would simply
be run on each location and associated edge set in the location
vector:

ΠI(l̄, E0, . . . , Ek) =

i=k⋃
i=0

InterestingVarSearch(li, Ei)

We say that for some network of k TTAs in a state l̄ that
Πl̄ = ΠI(l̄, E0, . . . , Ek). Using the set of interesting external
input variables, we can redefine the variable changing part of
the Tock-transition (Γ) to only change the interesting variables
of the current state l̄:

Γ(v) = v[v(x)/v′(x)].∀x ∈ Πl̄ s.t. v′(x) ∈ τ(x) (14)

Algorithm 1 Algorithm to find the interesting external input
variables. This algorithm ignores the addition to the flowchart
in Figure 18.

1: procedure INTERESTINGVARSEARCH(l,E)
2: ΠI = ∅
3: for each e = 〈l′, g, u, r, l′′〉 ∈ E do
4: if (l′ = l) then
5: if T (e) \ (V ∪ ΩO) ⊆ ΩI then
6: ΠI = ΠI ∪ (T (e) \ (V ∪ ΩO))

7: end if
8: if l′′ ∈ I then
9: ΠI = ΠI ∪ InterestingVarSearch(l′′,E \ {e})

10: end if
11: end if
12: end for
13: Return ΠI

14: end procedure

This notion of interestingness is not restricting in any way
meaningful to the functionality of the NTTA. It only prunes
away the states that are uninteresting in terms of verification
and can be seen as analogous to lazy evaluation of variables.
It can also be extremely effective in reducing the reachable
statespace. Consider the example TTA from before, with
a single location l1, l0 = l1 and a single edge E =

{〈l1, ε, ε, ε, l1〉} and the fifty boolean-valued external input
variables. In this example, none of the external input variables
have any effect on the behaviour of the system and so they
are all deemed uninteresting, reducing the size of the reachable
statespace from 1.1×1015 to just two states; One for the Tock-
transition and one with the location vector 〈l1〉.
Interestingness reduces the exponent part of the explosion
problem, but if the base is already big then reducing just the
exponent may not be enough i.e. 25650 = 2.6 × 10120 (fifty
byte-valued variables4) is a tremendously huge number, and if
we reduce the exponent to let’s say 4 interesting variables, we
still have that 2564 = 4.2 × 109 different states, which may
still be too large for verification. Therefore we will introduce
guarantee flagging.

4In the SafeCon III system, they typically have between three to four
analogue inputs, which are stored in a byte [0-255]

12



B. Guarantee Flagging

Systems developed in a Model Based Development manner,
such as SafeCon III, are typically designed by a domain
expert. During development these experts can typically provide
some guarantees that certain values will either increase,
decrease, stay the same or change to something within a range.
These guarantees are also usually directly dependent on some
assumptions, such as the current state of the system or the
environment. As an example: In SafeCon III it is very unlikely
that the truck will accellerate if the handbrake pulled. With an
error tolerance of 2 km/h this can be described as a predicate:

ρhb = handbrake =⇒ current_acc ≤ 2km/h (15)

However, a guarantee might not always be true; it depends on
the current state of the system. So we need to be able to define
for which states that a certain predicate holds true. One way of
doing this is by introducing the syntactic idea of flags, where
the system designer/domain expert flags certain locations of
the TTAs with different colored flags. These flags represent
certain predicates that are expected to be satisfied for when
the system is in such a flagged location.
Formaly, we define it as a mapping of locations to predicates
F (l) = ρ, where ρ is a boolean predicate describing the
current assumptions and guarantees of the system. We say that
a predicate ρ is testing (T (ρ)) a variable, if that variable occurs
in the predicate. As an example the predicate in Equation 15 is
testing the variables T (ρhb) = {handbrake,current_acc}.
If no manual flag is set for a certain location l, we simply say
that F (l) = tt .
This Assumption/Guarantee idea is inspired by stateful A/G
Interfaces described by L. de Alfaro and T. A. Henzinger in
[20], however we will not be defining a formal interface theory
for TTAs, as we deem it out of scope for this paper.

For a network of TTAs, guarantee predicates would be defined
as the logical conjunction of all flags in the current location
vector F (l̄) =

∧
l∈l̄ F (l).

ΩI {start , pmpspd , pmpindc, cancel}
ΩO {pmpgo}
V {x}
τ(pmpspd) {0, · · · , 255}
u1 pmpgo := tt

u2 x := 0

u3 x := x+ pmpspd

g1 start = tt

g2 cancel = tt ∨ x ≥ 400

g3 pmpindc = tt ∧ pmpspd ≥ 5

v (pmpindc = tt ∧ 20 ≤ pmpspd ≤ 40)∨
(pmpindc = ff ∧ pmpspd ≤ 5)

l1 l2 l3

l4

v v

v
u1, g1

u2, g2

u3, g3

Figure 19. Example TTA that uses guarantee flag (v) to shrink the domain
of pmpspd variable within a subsection of the TTA

Figure 19 shows a small example of a TTA, that accumulates
values from input variable pmpspd into local variable x until
it is cancelled by input variable cancel. It is flagged with
the predicate that analogue variable pmpspd (pumpspeed) will
only be within 20 ≤ pmpspd ≤ 40 whenever the pmpindc
(pumping indicator) input variable is true and pmpspd ≤ 5

if it is false. This lowers the amount of possible reachable
states from 2551 + 24 = 272 to 201 + 23 = 28 whenever
pmpindc = tt and 51 + 23 = 13 when pmpindc = ff . This
may seem like an insignificant saving in this example, but
consider the TTA in Figure 19 be duplicated five times and
composed into a network5. Then the savings would go from
2555 +24 = 1.07×1012 states to 205 +23 = 3.2million when
pmpindc = tt and 55+23 = 3133 states when pmpindc = ff .
Combined with interestingness, this technique can be quite
effective.

Since guarantee flag predicates are joined in conjunction in
networks of Tick Tock Automata, it might be interesting to
check if they are satifiable in conjunction with eachother or
not. If some of them aren’t the model checking engine could
then do a reachability analysis of wether or not a state with
such a predicate conjunction is reachable. Such a state would
obviously be an error. The model checker could then warn
the system designer when they add new predicates to the
system that are in conflict with eachother. The question of
satisfiability is an NP-Complete problem, but strategies such
as Binary Decision Diagrams (BDD) can be quite efficient in
solving that. If done at design time rather than verification time
(i.e. making the predicate satisfiability check part of the IDE
(Integrated Development Environment) itself) the satisfiability
checks can be cached by saving them in the project file.

IX. DISCUSSION

The Tick Tock Automata theory is mostly derived from the
way that the SafeCon III system operates, but the theory is
not limited to describing only that particular system. Since
the pipeline of execution is so similar, TTA theory can

5Only the parts concerning analogue variables are duplicated

13



also be applied to PLC (Programmable Logic Controllers)
based systems. However, the world of PLC programming
is very different from traditional PC (Personal Computer)
programming, and translating the model to an executable
state machine would have to be reimplemented for each
system. We choose to see this as an extra strong argument
for adopting Model Based Development with integrated
verification pipelines. Since developers only have to change
the model to state machine translation layer, assuming that
the new translation routine is implemented correctly in terms
of the modelling theory, the model and all the verified queries
associated with it still hold. Potentially no extra iteration is
needed to be done on the model making it hardware agnostic
and potentially saving many development hours that would
have been spent on implementing the same functionality as
before.

It would be beneficial to check for guarantee flag violations
during runtime. If any violations occur, the system state should
be logged so that engineers can fine tune their predicates so
that the verification results more accurately represent how the
real world operates.

The algorithm InterestingVarSearch can be run at design
time on non-immediate locations and then embed the results
into the project files, that way no unnecessary searching is
done at verification time. The guarantee flagging tool could
then potentially use this to highlight to the designer what
variables are interesting at the location they are flagging, and
in turn assist the designer to make more efficient predicates.

Throughout this paper, we have been considering traditional
state based verification for reachability analysis. However,
perhaps a more efficient approach would be to use a BDD
based approach, where states are represented as predicates
over variables and reachability is computed by ROBDD
(Reduced and Ordered Binary Decision Diagram) computation
as described in [21]. Such an approach may also benefit from
limiting the set of variables considered in a particular state
with InterestingVarSearch.

For a company to implement an MBD pipeline, there needs to
exist user friendly, efficient and reliable tools that can either
produce runtime executable code, or provide an interface for
developers to implement their runtime statemachine execution
framework and then produce statemachines. At the time of
writing, the only notable tool that provides this is IAR
VisualState, but no FOSS (Free and Open-source Software)
solutions that can provide everything in one package currently
exists. We hope that this TTA theory will serve as the
theoretical platform for such tooling to be created.

X. CONCLUSION

In this paper, we defined an automata-based syntax and
semantics based off of HMK Bilcon’s SafeCon III system,
that we named Tick Tock Automata (TTA). We defined
the semantics of parallel composition of such automata and
extended the semantics to adhear to SafeCon III’s actual
runtime behaviour by enforcing a minimum of ten ticks to
be taken. We defined two approaches to avoid statespace
explosion for efficient verification: Interestingness of external
input variables and manual guarantee flagging of locations.
The theory introduced in this paper can serve as a basis for
a general MBD tool chain that targets systems with execution
pipelines similar to that of PLCs, such as the SafeCon III
system. Enabling HMK Bilcon to introduce verification when
such a tool has been developed.

XI. ACKNOLEDGEMENTS

We would like to express our gratitude to HMK Bilcon for
providing information, source code and work space for this
collaboration, and we hope that the theories here are usable
and applicable for the SafeCon III project. We would also
like to thank our supervisor Ulrik for a nice and pressure-free
collaboration.

REFERENCES

[1] John Harrison. Formal Verification in Industry. https://
www.cl.cam.ac.uk/~jrh13/slides/anu-06dec02/slides.pdf.

[2] Jean Souyris, Virginie Wiels, David Delmas, and Hervé
Delseny. Formal verification of avionics software
products. In Ana Cavalcanti and Dennis R. Dams,
editors, FM 2009: Formal Methods, pages 532–546,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
ISBN 978-3-642-05089-3.

[3] Peter W O’Hearn. Continuous reasoning: Scaling the
impact of formal methods. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 13–25, 2018.

[4] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan
Munteanu, Marc Brooker, and Michael Deardeuff. How
amazon web services uses formal methods. Commun.
ACM, 58(4):66–73, March 2015. ISSN 0001-0782. doi:
10.1145/2699417. URL https://doi.org/10.1145/2699417.

[5] Gerd Behrmann, Alexandre David, and Kim G Larsen.
A tutorial on uppaal. In Formal methods for the design
of real-time systems, pages 200–236. Springer, 2004.

[6] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal
Design and Analysis of a Gear-Box Controller. In Proc.

14

https://www.cl.cam.ac.uk/~jrh13/slides/anu-06dec02/slides.pdf
https://www.cl.cam.ac.uk/~jrh13/slides/anu-06dec02/slides.pdf
https://doi.org/10.1145/2699417


of the 4th Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, number 1384 in
Lecture Notes in Computer Science, pages 281–297.
Springer–Verlag, March 1998.

[7] Alexandre David, Kim Larsen, Axel Legay, Ulrik Ny-
man, and Andrzej Wasowski. Ecdar: An environment
for compositional design and analysis of real time sys-
tems. pages 365–370, 09 2010. doi: 10.1007/978-3-642-
15643-4_29.

[8] A. David, L. Jacobsen, M. Jacobsen, K.Y. Jørgensen,
M.H. Møller, and J. Srba. TAPAAL 2.0: integrated
development environment for timed-arc Petri nets. In
Proceedings of the 18th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’12), volume 7214 of LNCS, pages
492–497. Springer-Verlag, 2012.

[9] Gnu general public license. URL https://www.gnu.org/
licenses/old-licenses/gpl-2.0.html.

[10] The 2-clause bsd license. URL https://opensource.org/
licenses/BSD-2-Clause.

[11] Asger Gitz-Johansen, Dan Kristiansen, and
Morten Konggaard Schou. stverif. https:
//github.com/skgaal/stverif, 2019.

[12] Gerard J Holzmann and Margaret H Smith. Automating
software feature verification. Bell Labs Technical
Journal, 5(2):72–87, 2000.

[13] Francis Schneider, Steve M Easterbrook, John R Calla-
han, and Gerard J Holzmann. Validating requirements for
fault tolerant systems using model checking. In Proceed-
ings of IEEE International Symposium on Requirements
Engineering: RE’98, pages 4–13. IEEE, 1998.

[14] David Harel and Eran Gery. Executable object modeling
with statecharts. In Proceedings of IEEE 18th Interna-
tional Conference on Software Engineering, pages 246–
257. IEEE, 1996.

[15] David Harel, Hagi Lachover, Amnon Naamad, Amir
Pnueli, Michal Politi, Rivi Sherman, Aharon Shtull-
Trauring, and Mark Trakhtenbrot. Statemate: A working
environment for the development of complex reactive
systems. IEEE Transactions on software engineering,
16(4):403–414, 1990.

[16] Sparx Systems LLC. Sparx enterprise architect user
manual, 2020. URL https://sparxsystems.com/enterprise_
architect_user_guide/.

[17] David Harel. Statecharts: A visual formalism for complex
systems. Science of computer programming, 8(3):231–
274, 1987.

[18] Andrzej Wąsowski and Peter Sestoft. On the formal
semantics of visualstate statecharts. 2002.

[19] Gerd Behrmann, Patricia Bouyer, Kim G Larsen, and

Radek Pelánek. Lower and upper bounds in zone-based
abstractions of timed automata. International Journal on
Software Tools for Technology Transfer, 8(3):204–215,
2006.

[20] Luca De Alfaro and Thomas A Henzinger. Interface the-
ories for component-based design. In International Work-
shop on Embedded Software, pages 148–165. Springer,
2001.

[21] Henrik Reif Andersen. An introduction to binary decision
diagrams. Lecture notes, available online, IT University
of Copenhagen, page 5, 1997.

15

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://github.com/skgaal/stverif
https://github.com/skgaal/stverif
https://sparxsystems.com/enterprise_architect_user_guide/
https://sparxsystems.com/enterprise_architect_user_guide/

	Introduction
	Model Based Development vs Model Driven Development
	Modelling and Verification Tool Survey
	UPPAAL
	TIGA
	CORA
	PORT
	SMC

	ECDAR
	H-UPPAAL
	TAPAAL
	SPIN
	Other Modelling Tools
	IBM Rational Rhapsody
	Sparx Enterprise Architect
	IAR Visual State

	Tool Summary

	Case with HMK Bilcon A/S
	Hardware Abstraction With Knowledge
	Mathematical Preliminaries
	Tick Tock Automata
	Avoiding Statespace Explosion
	Interesting-ness
	Guarantee Flagging

	Discussion
	Conclusion
	Acknoledgements

