
APPENDIX
A. PROOFS
Proofs of selected theorems are to be examined at the dis-
cretion of the programme committee.

A.1 Proofs for Section 2
Determinism of TIOAs. Remember that according to se-
mantic rules, TIOAs are always time deterministic. In order
to check for determinism of discrete action transitions check
for each location q and each action a ∈ Act, whether all its
guards are mutually exclusive. Formally, let Gq,a be the set
of strengthened guards of all i? transitions leaving q:

Gq,a = {ϕ ∧ Inv(q�) | whenever (q, a,ϕ, c, q�) ∈ E} (10)

To guarantee determinism check for each pair ϕ,ψ ∈ Gq,a

the conjunction Inv(q) ∧ ϕ ∧ ψ is inconsistent, and do that
for all locations.

Input-enabledness of Specification Automata. In order to
check that a TIOA S induces an input-enabled TIOTS [[S]]sem
decide for each location q ∈ LocS and each input action
i? ∈ Act if a disjunction of guards of outgoing transitions
labelled by i? is entailed by Inv(q). Formally, if Gq,i? is the
set of strengthened guards (see above) of all i?–transitions
leaving q then in order to check if i? is enabled in location
q, check if

Inv(q) entails
�

ψ∈Gg,i?

ψ (11)

To check if the entire specification automaton is input-
enabled just repeat the check for all location–input pair.

Proof Theorem. 1. Let us begin with defining an aux-
iliary function δ which chooses a delay and an output for
every locally consistent state s:

δs =

�
d for some d such that s d−→Ss� and ∃o!. s� o!−−→S

+∞ if ∀d ≥ 0. s d−→S

(12)

Note that δ is a function, so it always gives a unique value
of a delay for any state s, thus in the first case we mean that
an arbitrary fixed value is chosen out of possibly uncount-
ably many possible. It is immaterial for the proof which of
the many values is chosen, though. It is important however
that δ is time additive in the following sense: if s d−→s� and
d ≤ δs then δs� + d = δs. It is always possible to choose
such a function δ due to time additivity of −→S , and local
consistency of S.

We want to show for an arbitrary locally consistent specifi-
cations S that it has an implementation. This can be shown
by synthesising an implementation P = (StP , ps0 ,Σ

P ,−→P ),
where StP = {ps | s ∈ StS}, ΣP = ΣS with the same parti-
tioning into inputs and outputs, and −→P is the largest tran-

sition relation generated by the following rules:

s i?−−→Ss� i? ∈ ΣS
i

ps i?−−→P ps�
(13)

s o!−−→Ss� o! ∈ ΣS
o δs = 0

ps o!−−→P ps�
(14)

s d−→Ss� d ∈ R≥0 d ≤ δs

ps d−→P ps�
(15)

Since P only takes a subset of transitions of S, the de-
terminism of S implies determinism of P . The transition
relation of P is time-additive due to time additivity of −→S

and of δ. It is also time-reflexive due to the last rule (0 ≤ δs
for every state s and −→S was time reflexive). So P is a
TIOTS.

The new transition relation is also input enabled as it
inherits of input transitions from S which was input enabled.
So P is a specification. The second rule guarantees that
outputs are urgent (P only outputs when no further delays
are possible). Moreover P observes independent progress.
Consider a state ps. Then if δs = +∞ clearly ps can delay
indefinitely. If δs is finite, then by definition of δ and of P ,
the state ps can delay and hen produce an output. Thus P
is an implementation in the sense of Definition 4.

Now it is easy to show that the following relation R ⊆
StP × StS witnesses P sat S:

R =
�
(ps, s) | ps ∈ StP and s ∈ StS

�
(16)

This is done using an unsurprising coinductive argument.

Proof Theorem 2. Observe first that S is already lo-
cally consistent, so all its states warrant independent progress.
We only need to argue that it satisfies output urgency.

Without loss of generality, assume that S only contains
states which are reachable by (sequences of) discrete or timed
transitions.

If S only contains reachable states, every state of S has to
be related to some state of P in a relation R witnessing S ≤
P (output and delay transitions need to be matched in the
refinement; input transitions also need to be matched as P
is input enabled and S is deterministic). This can be argued
for using a standard, though slightly lengthy argument, by
formalizing reachable states as a fixpoint of a monotonic
operator.

Now that we know that every state of S is related to some
state of P consider an arbitrary s ∈ StS and let p ∈ StS

be such that (s, p) ∈ R. Then if s o!−−→Ss� for some state
s� ∈ StS and an output o! ∈ ΣS

o , it must be that also p o!−−→p�

for some state p� ∈ StP (and (s�, p�) ∈ R). But since P is an
implementation, its outputs must be urgent, so p � d−−→P for
all d > 0, and consequently s � d−−→S for all s > 0. We have
shown that all states of S have urgent outputs (if any) and
thus S is an implementation.

Checking Implementation Automaton Axioms. Take a spec-
ification automaton P . We will formalize the conditions un-
der which P is an implementation automaton (i.e. [[P ]]sem is
an implementation).



First we need to check for output urgency. This requires
that if an output transition is enabled the source location
invariant must not allow any delay, so for each outgoing
transition the transition guard conjoined with this invariant
should describe a single valuation of clocks (not a zone).
Formally for each output transition (q, o!,ϕ, c, q�) it must be
that Inv(q) ∧ ϕ ∧ Inv(q�) has a unique solution.

We have described in Section 2 how to check for indepen-
dent progress. Both checks need to be done for all location–
transition pairs.

We split the proof of Theorem 3 into two lemmas.

Lemma 1 (Soundness). Whenever S ≤ T and S, T
locally consistent then also [[S]]mod ⊆ [[T ]]mod

Proof. Assume existence of relations R1 and R2 wit-
nessing satisfaction of S by P and refinement of T by S
respectively. Use a standard co-inductive argument to show
that

R = {(p, t) ∈ StP × StT | ∃ s∈StS. (p, s) ∈ R1 ∧ (s, t) ∈ R2}
(17)

is a relation witnessing satisfaction of T by P . Also observe
that (p0, t0) ∈ R.

Lemma 2 (Completeness). Whenever [[S]]mod ⊆ [[T ]]mod

and S, T locally consistent then S ≤ T .

Proof Lemma 2. Assume that [[S]]mod ⊆ [[T ]]mod. In the
following we write p sat s for states p and s meaning that
there exists a relation R� witnessing P sat S that contains
(p, s).

We construct a binary relation R ⊆ StS × StT :

R = {(s, t) | ∀P. (p0 sat s =⇒ p0 sat t)} , (18)

where p0 is the initial state of P . We shall argue that R
witnesses S ≤ T . Consider a pair (s, t) ∈ R. There are two
cases to be considered:

• For any input i? there exists t� ∈ StT such that t i?−−→T t�.
We need to show existence of a state s� ∈ StS such that
s i?−−→Ss� and (s�, t�) ∈ R.

Observe that due to input-enabledness, for the same i?
there exists a state s� ∈ StS such that s i?−−→Ss�. We need
to show that (s�, t�) ∈ R. By Theorem 1 we have that
there exists an implementation P and its state p0 ∈ StP

such that p0 sat s� (technically speaking s may not be
an initial state of S, but we can consider a version of
S with initial state changed to s to apply Theorem 1,
concluding existence of an implementation).

Consider an arbitrary implementation Q sat S and its
state q0 ∈ StQ such that q0 sat s�. We need to show
that also q0 sat t�.

Create an implementation Q� by merging Q and P

above and adding a fresh state q with transition q i?−−→Q�
q0

and transitions q j?−−→Q�
p0 for all j? �= i?, j? ∈ Σi if

p j?−−→P p0. Now q sat s as p sat s and it follows all evo-

lutions of p for j? �= i? and q i?−−→Q�
q0 and q0 sat s�. By

assumption, every implementation of s is also an im-
plementation of t, so q sat t and consequently q0 sat t�

as q is deterministic on i?.

Summarizing, for any implementation q0 sat s� we were
able to argue that q0 sat t�, thus necessarily (s�, t�) ∈ R.

• Consider any action a (which is an output or a delay)
for which exists s� such that s a−→Ss�. Using a construc-
tion similar to the above it is not hard to see that one
can actually construct (and thus postulate existence)
of an implementation P containing p ∈ StP such that
p sat s which has a transition p a−→P p�. Since then also
p sat t we have that there exists t� ∈ StT such that
t a−→T t�. It remains to argue that (s�, t�) ∈ R. This is
done in the same way as with the first case, by consid-
ering any model of s�, then by extending it determin-
istically to a model of s, concluding that it is now a
model of t and the only a-derivative, which is p�, must
be a model of t�. Consequently (s�, t�) ∈ R.

It follows directly from the definition of R with [[S]]sem ⊆
[[T ]]sem that (s0, t0) ∈ R

A.2 Proofs for Section 3
Before we prove Theorem 4 let us first formalize the Θ

operator:

Θ(X) = errS ∩ {s ∈ StS | ∀d ≥ 0.

[∀ s�∈StS. s d−→s� implies s�∈X ∧ ∀ i?∈Σi. ∃ s��∈X. s� i?−−→s��]

∨ [∃ d�≤d. ∃ s�, s��∈X. ∃o! ∈ Σo. s d�−−→s� ∧ s� o!−−→s��]} (19)

The Θ operator formalizes a two player game, when both
players choose a delay, possibly zero, and then a move to be
made. The move with a shorter delay is executed. If the
two delays are equal then the move is nondeterministic, and
thus the operator computing the strategy requires that in
either of the moves has to be non-loosing.

Θ is a monotonic operator on a complete lattice, which
means that it has a greatest fixpoint, which precisely char-
acterizes the set of consistent states in S: consS = Θ(consS).

Proof Theorem 4. First, assume that s0 ∈ consS . Show
that S is consistent in the sense of Definition 7. In a similar
fashion to the proof of Theorem 1 we first postulate exis-
tence of a function δ, which chooses a delay and an output
for every consistent state s:

δs =

�
d� if ∃s�, s�� ∈ consS . s d�−−→Ss� and ∃o!. s� o!−−→Ss��

+∞ otherwise

(20)

Note that δ is a function, so it always gives a unique value
of a delay for any state s, thus in the first case we mean
that an arbitrary fixed value is chosen out of possibly un-
countably many d�s possible. It is important however that δ
is time additive in the following sense: if s d−→s� and d ≤ δs
then δs� + d = δs. It is always possible to choose such a
function δ due to time additivity of −→S , and the fact that
consS is a fixpoint of Θ.

We show this by constructing an implementation P =
(StP , p0,Σ

P ,−→P ) such that StP = {ps | s ∈ StS}, ΣP =
ΣS with the same partitioning in the inputs and outputs,
p0 = ps0 and the transition relation is the largest relation
generated by the following rules:

1. ps o!−−→P ps� iff s o!−−→Ss� and s� ∈ consS and δs = 0

2. ps i?−−→P ps� iff s i?−−→Ss�

3. ps d−→P ps� iff s d−→Ss� and d ≤ δs

Observe that the construction of P is essentially identical
to the one in the proof of Theorem 1 above. It can be



argued in almost the same way as in the above prove, that
P satisfies the axioms of TIOAs and is an implementation.
Here one has to use the definition of Θ in order to see that
the side condition in the first rule, that is s� ∈ consS , does
not introduce a violation of independent progress.

It remains to argue that P sat S. This is done by arguing
that the following relation R:

R =
�
(p, s) ∈ StP × StS | ps = p

�
(21)

witnesses the refinement of S by P .

Consider now the other direction. Assume that S is consis-
tent and show that s0 ∈ consS . In the following we write
that a state s is consistent, meaning that a specification
would be consistent if s was the initial state.

Let X = {s ∈ StS | s is consistent }. It suffices to show
that X is a post-fixed point of Θ, thus X ⊆ Θ(X) (then
s0 ∈ X = consS).

Since s is consistent, let us consider an implementation P
and a state p such that p sat s. We will show that s ∈ Θ(X).
Consider an arbitrary d ≥ 0 and the first disjunct in the
definition of Θ. If p d−→pd then also s d−→sd and pd sat sd, so
sd ∈ X. Consider an arbitrary input i? such that sd i?−−→s�.
Then also pd i?−−→p� and p� sat s� (by satisfaction). But then
s� ∈ X. So by the first disjunct of definition of Θ we have
that s ∈ Θ(X).
If p � d−−→ for our fixed value of d then by independent

progress of p there exists a dmax < d such that p dmax−−−−→p�

for some p� and p� o!−−→p�� for some p�� and some output o!.
By p sat s there also exist s� and s�� such that s dmax−−−−→s�

and s� o!−−→s��. Moreover p�� sat s��, so s�� ∈ X, which by the
second disjunct in the definition of Θ implies that s ∈ Θ(X).
So we conclude that X is a fixpoint of Θ. Since s0 is

consistent by assumption, then s0 ∈ X ⊆ consS .

Proof Thm. 6.1. We will prove that S∧T refines S (the
other refinement is entirely symmetric).

Intuitively the theorem holds because the pruning oper-
ator used to compute (S × T )Δ only removes output and
delay transitions (which are allowed to be dropped by the
refinement). It never removes input transitions.

Let S∧T = (StS ×StT , (s0, t0),Σ,−→) constructed accord-
ing to the definition of conjunction. We abbreviate the set
of states of S∧T as St. It is easy to see that the following re-
lation on states of S∧T and states of T witnesses refinement
of T by S ∧ T :

R =
�
((s1, t), s2) ∈ St× StS | s1 = s2

�
(22)

The argument is standard, and it takes into account that
St = consS×T is a fixpoint of Θ.

How Θ is taken into account is demonstrated in more de-
tail in the proof for Theorem 6.2.

In order to prove Theorem 6.2 we will need the following
lemma:

Lemma 3. For two specifications S, T , and their states
s, respectively t, if there exists an implementation P and
its state p such that simultaneously p sat s and p sat t then
(s, t) ∈ consS×T .

Proof of Lemma 3. This is shown by arguing that the
following set X of states of S × T is a postfixed point of Θ
(then (s, t) ∈ X ⊆ Θ(X) ⊆ consS×T ):

X = {(s, t) | ∃P. ∃ p∈StP . p sat s ∧ p sat t} (23)

This is done by checking that X ⊆ Θ(X). Take (s, t) ∈ X,
show that (s, t) ∈ Θ(X). So consider an arbitrary d0 ≥ 0.
We know that there exists state p such that p sat s and
p sat t. Since p is a state of an implementation it guarantees
independent progress, so there exists a delay dp such that
p dp−−→P p� for some state p�. Now the proof is split in two
cases, proceeding by coinduction:

(a) dp ≤ d0 is used to show that (s, t) ∈ Θ(X) using a
standard argument with the second disjunct in definition of
Θ (namely that p can delay and output leading to a refine-
ment of successors of s and t, which again will be in X).

(b) dp > d0 is used to show that (s, t) ∈ Θ(X) using
the same kind of argument with the first disjunct in the
definition of Θ (namely that then p can delay d0 time and
by refinement for any input transition it can advanced to a
state refining successors of s and t, which are in X).

Proof Thm. 6.2. Assume that U ≤ S and U ≤ T . Then
U ≤ S∧T . The first refinement is witnessed by some relation
R1, the second refinement by R2. Then the third refinement
is witnessed by the following relation R ⊆ StU × StS∧T :

R =
�
(u, (s, t)) ∈ StU×consS×T | (u, s)∈R1 ∧ (u, t)∈R2

�

The argument that R is a refinement is standard again, re-
lying on the fact that consS×T is a fixed point of Θ.

Consider an output case when u o!−−→Uu� for some output
o! and the target state u�. Then s o!−−→Ss� and t o!−−→T t� for
some states s� and t� and (u�s�) ∈ R1 and (u�, t�) ∈ R2. This
means that (s, t) o!−−→S×T (s�, t�). In order to finish the case we
need to argue that (s�, t�) ∈ StS∧T = consS×T . This follows
from Lemma 3 since U , and thus u�, is locally consistent,
and by transitivity any implementation satisfying u� would
be a common implementation of s� and t�.

The case for delay is identical, while the case for inputs
is unsurprising (since pruning in the computation of con-
junction never removes input transitions from consistent to
inconsistent states – there are no such transitions).

Theorem 6.3 follows directly from parts 1 and 2 of the
same theorem.

Proof Thm. 6.4. Again this follows easily from the facts
shown above. Take L = (S ∧ T ) ∧ U and R = S ∧ (T ∧ U).
Then Then L ≤ U and L ≤ S ∧ T , and consequently L ≤ U
and L ≤ S and L ≤ T . Now L ≤ T and L ≤ U implies
L ≤ T ∧ U , which with L ≤ S gives L ≤ S ∧ (T ∧ U). We
have shown that L ≤ R which gives [[L]]mod ⊆ [[R]]mod. The
argument for [[R]]mod ⊆ [[L]]mod is entirely symmetric.

A.3 Quotient

Lemma 4. The prequotient T � S is input enabled.



Proof sketch. Inputs of T � S are Σi = ΣT
i ∪ΣS

o . The
universal state u (respectively the inconsistent state e) is
input-enabled for Σi due to the [universal] (resp. [inconsistent])
rule. For the remaining states input enabledness follows
from the remaining rules. Let a ∈ Σi. For a ∈ ΣS

o we get
that the transition exists by the [unreachable], [unsafe], or
[all] rule. Otherwise, if a ∈ ΣT

i a transition is induced by
the [dividend], or [all] rule.

We now give the proof for Theorem 12. First observe that
if X has same input and output alphabets as T � S, then
ΣX

o and ΣS
o are disjoint and thus S|X is defined. We split

the argument for the two directions of the equivalence into
two separate lemmas below.

Lemma 5. For any two specifications S and T such that
T � S is defined and an implementation X over the same
alphabet as T � S:

S|X ≤ T implies X ≤ T � S

Proof of Lemma 5. We have the refinement relationR1

showing that S|X ≤ T and want to give a relation showing
that X ≤ T � S. We propose the following relation and
prove that it is a refinement demonstrating X ≤ T � S:

R2 = {(x, (t� s)) | s|x ≤ t} ∪ {(x, u) | x ∈ StX}
We have to prove that R2 is a refinement relation. We

have three cases based on the three rules in the refinement
definition:

Case 1: We have (t� s) i?−−→(t� s)� and we need to show that
x i?−−→x� and x� ≤ (t� s)�.

We have four subcases based on which rule was used to
conclude that (t� s) i?−−→(t� s)�.

Case 1.1 Rule [output-to-input]. We have both t i!−→t�

and s i!−→s� by the rule [output-to-input]. Because x
is input enabled we have x i?−−→x� and by rule [sync-
io] we have (s|x) i!−→(s�|x�) and thus s�|x� ≤ t� and
from this we can conclude that x� ≤ (t�, s�).

Case 1.2 Rule [input]. We have both t i?−−→t� and s i?−−→s�

by rule [input]. Because x is input enabled we have
x i?−−→x� and by rule [sync-in] we have (s|x) i?−−→(s�|x�)
and thus s�|x� ≤ t� and from this we can conclude
that x� ≤ (t�, s�).

Case 1.3 Rule [output-e]. We can conclude that this
rule could never have been used to conclude that
(t� s) i?−−→(t� s)� because in this case we would
have that t � i!−→ and s i!−→s�. This ensures that the
refinement on the left of the implication (s|x ≤ t)
is impossible.

Case 1.4 Rule [output-u] Because x is input enabled we
have x i?−−→x� and we have that x� ≤ u.

Case 2: We have x o!−−→x� and we need to show that (t� s) o!−−→(t� s)�

and x� ≤ (t� s)�.

There are to ways in which (t� s) o!−−→(t� s)� can be
the case:

Case 2.1 Rule [dividend-output1]: In this case we need
to prove t o!−−→t�. Since x o!−−→x� we know by rule
[indep-l] that x|s o!−−→x�|s and o /∈ ΣS

o ∪ ΣS
i . From

this we can conclude that x�|s ≤ t� and this exactly
gives us x�,≤ t� � s.

Case 2.2 Rule [dividend-output2]: In this case we need
to prove t o!−−→t�. Since x o!−−→x� and o ∈ ΣS

i we know
by rule [sync-io] that x|s o!−−→x�|s�. From this we can
conclude that x�|s� ≤ t� and this exactly gives us
x�,≤ t� � s�.

There is only one way in which (t� s) o!−−→(t� s)� can
be the case and this is due to rule [dividend-output] and
thus we need to prove t o!−−→t�. Since x o!−−→x� we know
by rule [indep-l] that x|s o!−−→x�|s and o /∈ ΣS

o . From this
we can conclude that x�|s ≤ t� and this exactly gives us
x�,≤ t� � s.

Case 3: We have x d−→x� and we need to show that (t� s) d−→(t� s)�

and x� ≤ (t� s)�.

We have two cases:

Case 3.1 If s � d−→ then we can conclude that (t� s) d−→u
and x� ≤ u.

Case 3.2 If s d−→s� then we have that s|x d−→s�|x� and by
s|x ≤ t we know that t d−→t� and s�|x� ≤ t� which
gives us x� ≤ t��s�. From t d−→t� and s d−→s� we also
have (t� s) d−→(t� � s�)

Finally we just mention that anything refines u and thus all
pairs added by {(x, u) | x ∈ StX} will continue to stay in
the refinement.

This concludes the proof.

Lemma 6. For any two specifications S and T such that
T � S is defined and an implementation X over the same
alphabet as T � S:

S|X ≤ T ⇐= X ≤ T � S

Proof of Lemma 6. We have the refinement relationR2

showing that X ≤ T �S and want to give a relation showing
that S|X ≤ T . We propose the following relation and prove
that it is a refinement demonstrating S|X ≤ T :

R1 = {(s|x, t) | x ≤ t� s}
We have to prove that R1 is a refinement relation. We

have three cases based on the three rules in the refinement
definition:

Case 1: We have t i?−−→t� and we need to show that (s|x) i?−−→(s|x)�
and (s|x)� ≤ t�. Since we know that s is input enabled
we have that s i?−−→s� and by rule [input] we have that
(t� s) i?−−→(t� � s�). By x ≤ t� s we know that x i?−−→x�

and x� ≤ t� � s�. Since we have s i?−−→s� and x i?−−→x� we
can also conclude that s|x i?−−→s�|x�.

Case 2: We have s|x o!−−→(s|x)� and we need to show that
t o!−−→t� and (s|x)� ≤ t�.

We have four cases:

Case 2.1: If o ∈ ΣS
o ∩ ΣX

i we have s|x o!−−→s�|x� with
s o!−−→s� and x o?−−→x� by rule [sync-io]. In this case
we have two subcases: Either t o!−−→t� or t � o!−−→. In
the first case we havet o!−−→t� by assumption and
rule [output-to-input] can be used to conclude that
x� ≤ t��s� because x is input enabled. This in turn
gives us s�|x� ≤ t�. In the other case t � o!−−→ and this
leads us to conclude that x� ≤ e which could not



have been the case in the first place, so we need
not consider this case.

Case 2.2: It can never be the case that o ∈ ΣS
o \ ΣX

i

because we know that o ∈ ΣT
o and thus we know

that it will be in ΣX
i = ΣS

i ∩ ΣT
i ∪ ΣS

o ∩ ΣT
o .

Case 2.3: If o ∈ ΣX
o ∩ ΣS

i we have s|x o!−−→s�|x� with
s o?−−→s� and x o!−−→x� by rule [sync-io]. In this case
we can conclude from rule [dividend-output2] that
t� s o!−−→t� � s� which gives us x� ≤ t� � s� which in
turn gives us s�|x� ≤ t�.

Case 2.4: If o ∈ ΣX
o \ΣS

i we have s|x o!−−→s|x� with x o!−−→x�

by rule [indep-r]. In this case we can conclude from
rule [dividend-output1] that t� s o!−−→t� � s which gives
us x� ≤ t� � s which in turn gives us s|x� ≤ t�.

Case 3: We have s|x d−→s�|x� and we need to show that t d−→t�

and s�|x� ≤ t�.

From s|x d−→s�|x� we have s d−→s� and x d−→x�. Since
we have x d−→x�, s d−→s� and x ≤ t � s we know that
t� s d−→t� � s� (because only rule [delay] could have been
used) and x� ≤ t� � s�. Thus we also have t d−→t� from
the premise of rule [delay] and can conclude s�|x� ≤ t�

This concludes the proof.


